[NOIP2012提高组] CODEVS 1200 同余方程(扩展欧几里德算法)

数论题..所有数论对我来说都很恶心..不想再说什么了..

------------------------------------------------

#include<iostream>

using namespace std;

void gcd(int a,int b,int &x,int &y) {

if(!b) { x=1; y=0; }

else {

gcd(b,a%b,x,y);

int t=x; x=y;

y=t-a/b*x;

}

}

int main()

{

// freopen("test.in","r",stdin);

// freopen("test.out","w",stdout);

int a,b,x,y;

cin>>a>>b;

gcd(a,b,x,y);

cout<<(x%b+b)%b<<endl;

return 0;

}

------------------------------------------------

1200 同余方程

2012年NOIP全国联赛提高组

时间限制: 1 s

空间限制: 128000 KB

题目等级 : 钻石 Diamond

题解

题目描述 Description

求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解。

输入描述 Input Description

输入只有一行,包含两个正整数 a, b,用 一个 空格隔开。

输出描述 Output Description

输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解。

样例输入 Sample Input

3 10

样例输出 Sample Output

7

数据范围及提示 Data Size & Hint

【数据范围】
对于 40%  的数据, 2 ≤b≤ 1,000 ;
对于 60% 的数据, 2 ≤b≤ 50,000,000 
对于 100%  的数据, 2 ≤a, b≤ 2,000,000,000

时间: 2024-10-07 15:29:13

[NOIP2012提高组] CODEVS 1200 同余方程(扩展欧几里德算法)的相关文章

扩展gcd codevs 1200 同余方程

codevs 1200 同余方程 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空格隔开. 输出描述 Output Description 输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解. 样例输入 Sa

刷题总结——疫情控制(NOIP2012提高组)

题目: 题目背景 NOIP2012 提高组 DAY2 试题. 题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都,也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散到边境城市(叶子节点所表示的城市),决定动用军队在一些城市建立检查点,使得从首都到边境城市的每一条路径上都至少有一个检查点,边境城市也可以建立检查点.但特别要注意的是,首都是不能建立检查点的. 现在,在 H 国的一些城市中已经驻扎有军队,且

扩展欧几里德算法—求解不定方程,线性同余方程

#include<stdio.h> int extended_gcd(int a,int b,int &x,int &y) { int r,t; if(!b) { x = 1; y = 0; return a; } r = extended_gcd(b,a%b,x,y); t = x; x = y; y = t-a/b*y; return r; } int main() { int a,b,x,y,z; scanf("%d%d",&a,&b)

1154 能量项链 2006年NOIP全国联赛提高组 codevs

1154 能量项链  2006年NOIP全国联赛提高组 codevs 题目描述 Description 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记.因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量.如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量

扩展欧几里得算法------扩展欧几里德算法

扩展欧几里得算法及其应用 一.扩展欧几里得算法 扩展欧几里得算法:对于不完全为 0 的非负整数 a,b,若gcd(a,b)表示 a,b 的最大公约数,必然存在整数对x,y ,使得 ax+by = gcd(a,b). 算法过程: 设 a>b,当 b=0时,gcd(a,b)=a.此时满足ax+by = gcd(a,b)的一组整数解为x=1,y=0:当a*b!=0 时, 设 a*x1+b*y1=gcd(a,b):b*x2+(a mod b)*y2=gcd(b,a mod b): 根据欧几里得原理知 g

扩展欧几里德算法的应用

感谢:http://blog.csdn.net/u014634338/article/details/40210435 扩展欧几里德算法的应用主要有以下三方面: (1)求解不定方程: (2)求解模的逆元: (3)求解模线性方程(线性同余方程): 一.解不定方程 对于不定整数方程pa+qb=c, 1.若 c mod gcd(p, q)=0,则该方程存在整数解,否则不存在整数解.   2.在找到p * a+q * b = gcd(p, q)的一组解p0,q0后,p * a+q * b = gcd(p

扩展欧几里德算法

文章来源:http://blog.csdn.net/zhjchengfeng5/article/details/7786595 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了

欧几里德与扩展欧几里德算法(转)

欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a

欧几里德与扩展欧几里德算法

转自网上大牛博客,讲的浅显易懂. 原文地址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有