拉格朗日乘子法与KKT条件

拉格朗日乘子法

\[ min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_3 = 2 \]

\[ min \quad f = 2x_1^2+3x_2^2+7x_3^2 +\alpha _1(2x_1+x_2- 1)+\alpha _2(2x_2+3x_3 - 2) \]

\[ \dfrac{\partial f}{\partial x_1}=4x_1+2\alpha_1=0\Rightarrow x_1=-0.5\alpha_1 \\ \dfrac{\partial f}{\partial x_2}=6x_2+\alpha_1+2\alpha_2=0\Rightarrow x_2=-\dfrac{\alpha_1+2\alpha_2}{6} \\ \dfrac{\partial f}{\partial x_3}=14x_3+3\alpha_2=0\Rightarrow x_3=-\dfrac{3\alpha_2}{14} \]

KKT条件

\[ min \quad f = x_1^2-2x_1+1+x_2^2+4x_2+4 \\s.t. \quad x_1+10x_2 > 10 \\ \quad \quad \quad 10 x_1-10x_2 < 10 \]

\[ s.t. \quad 10-x_1-10x_2 <0 \\ \quad \quad \quad 10x_1-x_2 - 10<0 \]

\[ L(x,\alpha) = f(x) + \alpha_1g1(x)+\alpha_2g2(x)\\ =x_1^2-2x_1+1+x_2^2+4x_2+4+ \alpha_1(10-x_1-10x_2 ) +\\\alpha_2(10x_1-x_2 - 10) \]

\[ L(x,\alpha,\beta) = f(x) + \sum\alpha_ig_i(x)+\sum\beta_ih_i(x) \]

(1) L对各个x求导为零;

(2) h(x)=0;

(3) \( L(x,\alpha,\beta) = f(x) + \sum\alpha_ig_i(x)+\sum\beta_ih_i(x) \)

\[ min \quad f = x_1^2-2x_1+1+x_2^2+4x_2+4 \\s.t. \quad 10-x_1-10x_2 <0 \\ \quad \quad \quad 10x_1-x_2 - 10<0 \]

\[ L(x,\alpha)= x_1^2-2x_1+1+x_2^2+4x_2+4+\\\alpha_1(10-x_1-10x_2)+\alpha_2(10x_1-x_2 - 10) \]

\[ \dfrac{\partial L}{\partial x_1}=2x_1-2-\alpha_1+10\alpha_2=0\Rightarrow x_1=0.5(\alpha_1-10\alpha_2+2) \\ \dfrac{\partial L}{\partial x_2}=2x_2+4-10\alpha_1-\alpha_2=0\Rightarrow x_2=0.5(10\alpha_1+\alpha_2-4) \]

\[ \alpha_1*g_1(x)=\alpha_1*(10-x_1-10x_2)=0\\\alpha_2*g_2(x)=\alpha_2*(10x_1-x_2 - 10)=0 \]

\[ α1=58/101,α2=4/101 \]
\[ x1=110/101=1.08;x2=90/101=0.89 \]

时间: 2024-11-07 02:49:41

拉格朗日乘子法与KKT条件的相关文章

关于拉格朗日乘子法与KKT条件

关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情况

【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

目录 将有约束问题转化为无约束问题 拉格朗日法 KKT条件 拉格朗日法更新方程 凸优化问题下的拉格朗日法 罚函数法 对梯度算法进行修改,使其运用在有约束条件下 投影法 梯度下降法 to 投影梯度法 正交投影算子 References 相关博客 梯度下降法.最速下降法.牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用这些梯度方法会有问题,如更新后的值不满足约束条件. 那么问题来了,如何处理有约束的优化问题?大致可以分为以下两种方式: 将有约束的问题转化为无约束的问题,

拉格朗日乘子法(Lagrange Multiplier)和KKT条件

拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其为零,可求得候选最优值. (2)有等式约束的优化问题:, 使用拉格朗日乘子法,把等式约束用一个系数与写为一个式子,称为拉格朗日函数.再通过对各个参数求取导数,联立等式进行求取最优值. (3)有不等式约束的优化问题.,,. 把所有的不等式约束.等式约束和目标函数全部写为一个式子:. KKT条件的最优值

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么

非负矩阵分解(3):拉格朗日乘子法求解

作者:桂. 时间:2017-04-07  07:11:54 链接:http://www.cnblogs.com/xingshansi/p/6679325.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 最近发这类文章,动不动就被管理员从首页摘除,如果你觉得这个文章还说得过去,麻烦帮忙点个赞吧,这样移除的概率小一些.... 本文为非负矩阵分解系列第三篇,在第二篇中介绍了不同准则下乘法算法的推导及代码实现,这里不免有一个疑问:明明是一个约束的优化问题,虽然乘法算法巧妙地将其变为一个无约束优化

增广拉格朗日乘子法(Augmented Lagrange Method)

转载自:增广拉格朗日乘子法(Augmented Lagrange Method) 增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格朗日乘子法的解决方案是: L(X,λ)=f(X)+μh(X); μ:Rm 此时,求解L对X和μ的偏导同时为零就可以得到最优解了. 增广拉格朗日乘子法的解决方案是: Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2 每

数学基础系列(四)----拉格朗日乘子法、行列式、矩阵基础

一.拉格朗日乘子法 1.通俗解释 给个函数:$Z=f(x,y)$如何求出它的极值点呢?有了前面的知识,简单来说直接求它的偏导不就OK了吗? 那现在假如说对这个函数加上一个约束条件呢?也就说现在假如有这样一个约束条件$2xy+2yz+2zx=S$,那该怎么样求出函数$Z(x,y,z)=xyz$的最大值呢? 在这样的约束条件下,到底什么点是我们想要的? 假如说我们现在有这样一座山峰,这座山峰的高度是$f(x,y)$,其中有一条曲线是$g(x,y) =C$.曲线镶嵌在山上,我们该如何找到曲线的最低点呢

机器学习中的数学——拉格朗日乘子法

拉格朗日乘子法:应用在求有约束条件的函数的极值问题上. a. 对于没有约束的函数求极值,只要求导,令导函数等于零即可. b. 对于约束条件是等式的函数. 目标函数:f(x), 约束条件:g(x)=0 求解f(x)在此约束条件下的极值. 定义拉格朗日函数 : L(x,λ)=f(x)+ λg(x) 分别对参数求偏导数,置零.

拉格朗日乘子法

基本的拉格朗日乘子法是求函数f(x1,x2,...)在g(x1,x2,...)=0的约束条件下的极值的方法. 主要思想:引入一个新的参数λ(即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解. 假设需要求极值的目标函数为f(x,y),限制条件为φ(x,y)=M 解:设g(x,y)=M-φ(x,y) 定义一个新函数:F(x,y,λ)=f(x,y)+λg(x,y) 则用偏导数方法列出方程:?F/?x=0,?F/?y=0,?F/?