通讯框架 t-io 学习——websocket 部分源码解析

前言

  前端时间看了看t-io的websocket部分源码,于是抽时间看了看websocket的握手和他的通讯机制。本篇只是简单记录一下websocket握手部分。

WebSocket握手

  好多人都用过websocket,不过有的都是在框架之上,只知道连接某个地址,然后调用js API就可以使用websocket了。但是通过阅读t-io的源码才稍微有点明白,服务端到底做了什么。将t-io的websocket demo运行起来之后,我们看一下请求。

  可以看到,请求头部分:

  Connection:Upgrade 固定

  Upgrade:websocket 固定

  Host:为websocket请求地址

  Sec-WebSocket-Version:13,websocket协议版本号

  Sec-WebSocket-Key:发送给服务端需要校验的key,是一个Base64 encode的值,这个是浏览器随机生成的。那么服务端如果响应的话,需要做如下操作:将 Key 追加固定字符串 :“258EAFA5-E914-47DA-95CA-C5AB0DC85B11”,然后进行SHA-1加密,在转化为base64.

  服务端响应如下:

  Status Code:101 Switching Protocols

  sec-websocket-accept:为上文中转化为base64的串。

  upgrade:升级为websocket协议

  握手成功,可以进行通讯。

握手源码

  代码来源:tio/websocket/server/WsServerAioHandler.java

public static HttpResponse updateWebSocketProtocol(HttpRequest request, ChannelContext channelContext) {
     //首先获取请求头部信息
        Map<String, String> headers = request.getHeaders();
     //获取Sec-WebSocket-Key
        String Sec_WebSocket_Key = headers.get(HttpConst.RequestHeaderKey.Sec_WebSocket_Key);

     //如果key是空的话,肯定不会握手成功
        if (StringUtils.isNotBlank(Sec_WebSocket_Key)) {
       //追加固定串
            String Sec_WebSocket_Key_Magic = Sec_WebSocket_Key + "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";
       //SHA-1加密
            byte[] key_array = SHA1Util.SHA1(Sec_WebSocket_Key_Magic);
       //转化为base64
            String acceptKey = BASE64Util.byteArrayToBase64(key_array);
       //构造响应体
            HttpResponse httpResponse = new HttpResponse(request, null);
       //响应状态码 101 Switching Protocols
            httpResponse.setStatus(HttpResponseStatus.C101);

            Map<String, String> respHeaders = new HashMap<>();
       //Connection:upgrade
            respHeaders.put(HttpConst.ResponseHeaderKey.Connection, HttpConst.ResponseHeaderValue.Connection.Upgrade);
       //Upgrade:websocket
            respHeaders.put(HttpConst.ResponseHeaderKey.Upgrade, "WebSocket");
       //Sec-WebSocket-Accept:生成的base64串
            respHeaders.put(HttpConst.ResponseHeaderKey.Sec_WebSocket_Accept, acceptKey);
       //设置响应头
            httpResponse.setHeaders(respHeaders);
       //返回响应信息 握手成功
            return httpResponse;
        }
        return null;
    }

WebSocket 数据帧解析

  注:博客部分内容来源于:https://github.com/zhangkaitao/websocket-protocol/wiki/5.%E6%95%B0%E6%8D%AE%E5%B8%A7  有兴趣的同学可以直接读本链接内容。

  相信很多人从其他博客中也看过这个图,当然啦,这个图是官方出品的权威数据帧格式图。

  其实我第一眼看的时候确实看不懂,不过没关系,一点一点的看。

  FIN:1bit,指示这个消息是否为最后片段,1是,0否。如果不是最后片段,则服务端需要将所有消息接受完并组装成一个完整的消息才可以。(t-io中目前只支持FIN=1)

  RSV123每个长度为1bit,目前就都是固定 0。

  opcode:4bit,数据操作类型。

  • %x0 代表一个继续帧
  • %x1 代表一个文本帧
  • %x2 代表一个二进制帧
  • %x3-7 保留用于未来的非控制帧
  • %x8 代表连接关闭
  • %x9 代表ping
  • %xA 代表pong
  • %xB-F 保留用于未来的控制帧

  MASK:1bit,是否掩码,1掩码,0非掩码。从客户端发送到服务端的这个值必须为1,否则服务端不接受。服务端返回到客户端的这个值必须为 0.

  Payload len:负载数据的长度,7bit。由于7bit只能存储0-127,所以为了能够表示准确的长度,在这个值为0-125区间的时候,payload length的长度就是该值。当 值为126的时候,后边两个字节(16位)的值表示长度。当值为127的时候,后边8字节(64位)的值表示长度。

  Mask key:掩码,0或4个bit。值取决于MASK是否为1.在有掩码的情况下,数据就要根据掩码来解析。否则不用解析。解析规则为:每个字节的值与掩码的索引(字节索引值对4取模)异或运算。(array[i] = array[i] ^ mask[i % 4])

  其实说实话我也没弄得非常懂,但是基本了解了以上这些知识之后,我们就可以读懂源码的意思了。

数据帧解析源码

  代码来源:tio/websocket/common/WsServerDecoder.java

  代码中的注释为我自己的理解所添加的注释,不一定正确。(由于源码中有部分注释,我的注释添加“注”字以作区分)

public static WsRequest decode(ByteBuffer buf, ChannelContext channelContext) throws AioDecodeException {
WsSessionContext imSessionContext = (WsSessionContext) channelContext.getAttribute();
List<byte[]> lastParts = imSessionContext.getLastParts();

//第一阶段解析
int initPosition = buf.position();
int readableLength = buf.limit() - initPosition;

int headLength = WsPacket.MINIMUM_HEADER_LENGTH;
    
if (readableLength < headLength) {
return null;
}
//注:读取第一个字节 这里以 0x81举例 它的二进制为:10000001
byte first = buf.get();
//注:这个 0xff还是很有意思的,当byte类型想转为int类型的时候,比如: int res = byteValue & 0xff;
//int b = first & 0xFF; //转换成32位
// 0x80(127) 10000000
// 0x81(128) 10000001
// 此行代码说实话,我是用了很长的时间才理解,说来惭愧,刚开始连 & 操作符啥意思都不清楚。
// 按位与运算符“&”是双目运算符。其功能是参与运算的两数各对应的二进位相与。只要对应的二个二进位都为1时,结果位就为1。
// 参与运算的两个数均以补码出现。
// 0x80 & 0x81 10000000
boolean fin = (first & 0x80) > 0; //得到第8位 10000000>0
//注:这段我不理解什么意思,为什么要右移4位
@SuppressWarnings("unused")
int rsv = (first & 0x70) >>> 4;//得到5、6、7 为01110000 然后右移四位为00000111
//注:获取操作码
//0x0f 00001111 (按位与操作,前四位都为0,那么操作结果就是opCode的值)
byte opCodeByte = (byte) (first & 0x0F);//后四位为opCode 00001111
//注:转换OpCode
Opcode opcode = Opcode.valueOf(opCodeByte);
if (opcode == Opcode.CLOSE) {
//Aio.remove(channelContext, "收到opcode:" + opcode);
//return null;
}
if (!fin) {
    log.error("{} 暂时不支持fin为false的请求", channelContext);
    Aio.remove(channelContext, "暂时不支持fin为false的请求");
    return null;
//下面这段代码不要删除,以后若支持fin,则需要的

//            if (lastParts == null) {

//                lastParts = new ArrayList<>();

//                imSessionContext.setLastParts(lastParts);

//            }

} else {
    imSessionContext.setLastParts(null);
}

//注:开始解析第二个字节。8-16位,第八位为mask掩码值1或者0,后7位为payload length
byte second = buf.get(); //向后读取一个字节
//注:又是 & 操作。 0xff:11111111
// 11111111 & 10000001 = 10000001  向右移动七位,只剩下第一位的值 00000001
//所以该操作过后就知道第一位为 0 或者 1 ,得知 payload Data是否经过掩码处理
boolean hasMask = (second & 0xFF) >> 7 == 1; //用于标识PayloadData是否经过掩码处理。如果是1,Masking-key域的数据即是掩码密钥,用于解码PayloadData。客户端发出的数据帧需要进行掩码处理,所以此位是1。

// Client data must be masked

if (!hasMask) { //第9为为mask,必须为1
//throw new AioDecodeException("websocket client data must be masked");
} else {
    //注:有掩码的情况下,掩码占用4个字节,所以在这里headLength + 4
    headLength += 4;
}
//注:第一位为mask位置,后7位为payload length
//0x7f : 01111111
//&操作过后得到payload的值
//读取后7位  Payload legth,如果<126则payloadLength
int payloadLength = second & 0x7F;
byte[] mask = null;
//注:如果payloadLength = 126,那么说明这个值不是真正的payloadLength,后边两个字节才表示真正的length
//为126读2个字节,后两个字节为payloadLength
if (payloadLength == 126) {
    //需要多占两个字节表示payloadLength。headlength + 2
    headLength += 2;
if (readableLength < headLength) {
    return null;
}

payloadLength = ByteBufferUtils.readUB2WithBigEdian(buf);
  log.info("{} payloadLengthFlag: 126,payloadLength {}", channelContext, payloadLength);

}
//注:如果payloadLength = 127,则后 8个字节 64位长度的值表示payloadLength
//127读8个字节,后8个字节为payloadLength
else if (payloadLength == 127) {
    //头部长度 + 8
    headLength += 8;
if (readableLength < headLength) {
    return null;
}
//注:我猜测getLong方法就读取buf中下一位长整数,即64位的payloadLength(first ,second都已经读取完)
//|first|second|payloadLength|
payloadLength = (int) buf.getLong();
  log.info("{} payloadLengthFlag: 127,payloadLength {}", channelContext, payloadLength);
}

if (payloadLength < 0 || payloadLength > WsPacket.MAX_BODY_LENGTH) {
throw new AioDecodeException("body length(" + payloadLength + ") is not right");
}

if (readableLength < headLength + payloadLength) {
  return null;
}

if (hasMask) {
    //注:有掩码,掩码长度为4个字节,读取掩码的值
    mask = ByteBufferUtils.readBytes(buf, 4);
}

//第二阶段解析
WsRequest websocketPacket = new WsRequest();
//注:设置各种属性值
websocketPacket.setWsEof(fin);
websocketPacket.setWsHasMask(hasMask);
websocketPacket.setWsMask(mask);
websocketPacket.setWsOpcode(opcode);
websocketPacket.setWsBodyLength(payloadLength);

if (payloadLength == 0) {
    return websocketPacket;
}
//注:读取payloadLength长度的body值
byte[] array = ByteBufferUtils.readBytes(buf, payloadLength);
if (hasMask) {
    //注:有掩码,所以需要通过掩码解析
    for (int i = 0; i < array.length; i++) {
        //^操作 位值相同为0 ,不同为1
        // 00001111 ^ 00001010 = 00000101
        array[i] = (byte) (array[i] ^ mask[i % 4]);
    }
}

if (!fin) {
//lastParts.add(array);

    log.error("payloadLength {}, lastParts size {}, array length {}", payloadLength, lastParts.size(), array.length);
    return websocketPacket;
} else {
    int allLength = array.length;
    if (lastParts != null) {
    for (byte[] part : lastParts) {
      allLength += part.length;
  }
byte[] allByte = new byte[allLength];

int offset = 0;
for (byte[] part : lastParts) {
    System.arraycopy(part, 0, allByte, offset, part.length);
    offset += part.length;
}
System.arraycopy(array, 0, allByte, offset, array.length);
    array = allByte;
}

websocketPacket.setBody(array);

if (opcode == Opcode.BINARY) {

} else {
    try {
        String text = null;
        text = new String(array, WsPacket.CHARSET_NAME);
        websocketPacket.setWsBodyText(text);
    } catch (UnsupportedEncodingException e) {
        log.error(e.toString(), e);
        }
    }
}
    return websocketPacket;
}

总结

  由于本人也是小菜鸟,能看懂的就那么多了,很多代码都读不懂。哎,大神就是大神啊,编码都精准到每一个bit上了。不过通过阅读源码和websocket文档对比,还是多少能够理解一些的。再次感谢开源贡献者,向所有开源大神致敬。

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Menlo; color: #008400; background-color: #d0efd6 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Menlo; color: #000000; background-color: #d0efd6 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Menlo; color: #000000; background-color: #d0efd6; min-height: 19.0px }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Menlo; color: #ba2da2; background-color: #d0efd6 }
span.s1 { color: #ba2da2 }
span.s2 { color: #000000 }
span.s3 { color: #272ad8 }
span.s4 { color: #008400 }
span.s5 { color: #d12f1b }

时间: 2024-10-04 09:45:36

通讯框架 t-io 学习——websocket 部分源码解析的相关文章

Laravel框架下路由的使用(源码解析)

本篇文章给大家带来的内容是关于Laravel框架下路由的使用(源码解析),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助. 前言 我的解析文章并非深层次多领域的解析攻略.但是参考着开发文档看此类文章会让你在日常开发中更上一层楼. 废话不多说,我们开始本章的讲解. 入口 Laravel启动后,会先加载服务提供者.中间件等组件,在查找路由之前因为我们使用的是门面,所以先要查到Route的实体类. 注册 第一步当然还是通过服务提供者,因为这是laravel启动的关键,在 RouteSer

iOS即时通讯之CocoaAsyncSocket源码解析四

原文 前言: 本文为CocoaAsyncSocket源码系列中第二篇:Read篇,将重点涉及该框架是如何利用缓冲区对数据进行读取.以及各种情况下的数据包处理,其中还包括普通的.和基于TLS的不同读取操作等等.注:由于该框架源码篇幅过大,且有大部分相对抽象的数据操作逻辑,尽管楼主竭力想要简单的去陈述相关内容,但是阅读起来仍会有一定的难度.如果不是诚心想学习IM相关知识,在这里就可以离场了... 注:文中涉及代码比较多,建议大家结合源码一起阅读比较容易能加深理解.这里有楼主标注好注释的源码,有需要的

神经网络caffe框架源码解析--data_layer.cpp类代码研究

dataLayer作为整个网络的输入层, 数据从leveldb中取.leveldb的数据是通过图片转换过来的. 网络建立的时候, datalayer主要是负责设置一些参数,比如batchsize,channels,height,width等. 这次会通过读leveldb一个数据块来获取这些信息. 然后启动一个线程来预先从leveldb拉取一批数据,这些数据是图像数据和图像标签. 正向传播的时候, datalayer就把预先拉取好数据拷贝到指定的cpu或者gpu的内存. 然后启动新线程再预先拉取数

java集合 源码解析 学习手册

学习路线: http://www.cnblogs.com/skywang12345/ 总结 1 总体框架 2 Collection架构 3 ArrayList详细介绍(源码解析)和使用示例 4 fail-fast总结(通过ArrayList来说明fail-fast的原理.解决办法) 5 LinkedList详细介绍(源码解析)和使用示例 6 Vector详细介绍(源码解析)和使用示例 7 Stack详细介绍(源码解析)和使用示例 8 List总结(LinkedList, ArrayList等使用

图解 Java IO : 二、FilenameFilter源码

Writer      :BYSocket(泥沙砖瓦浆木匠) 微         博:BYSocket 豆         瓣:BYSocket FaceBook:BYSocket Twitter    :BYSocket 从上一篇 图解 Java IO : 一.File源码 并没有把所有File的东西讲完.这次讲讲FilenameFilter,关于过滤器文件<Think In Java>中写道: 更具体地说,这是一个策略模式的例子,因为list()实现了基本功能,而按着形式提供了这个策略,完

神经网络caffe框架源码解析--softmax_layer.cpp类代码研究

// Copyright 2013 Yangqing Jia // #include <algorithm> #include <vector> #include "caffe/layer.hpp" #include "caffe/vision_layers.hpp" #include "caffe/util/math_functions.hpp" using std::max; namespace caffe { /**

Mysql学习之--卸载源码mysql-5.6安装mysql-5.5

Mysql学习之--卸载源码mysql-5.6安装mysql-5.5 系统环境: 操作系统:RedHat EL6 DB Soft:  Mysql 5.5.12     Mysql 在linux下的安装方式有两种版本,一种为Binary(二进制),另外一种为Source(源码包),本文为Source Install方式. 由于,本机已经安装了mysql-5.6的版本,前面的版本采用源码包安装,只需要删除相应的安装文件即可! 1.卸载mysql-5.6 删除/var/lib/mysql下的文件: [

Hadoop学习笔记(9) ——源码初窥

Hadoop学习笔记(9) ——源码初窥 之前我们把Hadoop算是入了门,下载的源码,写了HelloWorld,简要分析了其编程要点,然后也编了个较复杂的示例.接下来其实就有两条路可走了,一条是继续深入研究其编程及部署等,让其功能使用的淋漓尽致.二是停下来,先看看其源码,研究下如何实现的.在这里我就选择第二条路. 研究源码,那我们就来先看一下整个目录里有点啥: 这个是刚下完代码后,目录列表中的内容. 目录/文件 说明 bin 下面存放着可执行的sh命名,所有操作都在这里 conf 配置文件所在

iOS即时通讯之CocoaAsyncSocket源码解析五

接上篇:iOS即时通讯之CocoaAsyncSocket源码解析四         原文 正文待补...