Large Scale Metric Learning from Equivalence Constraints (KISSME) CVPR 2012

In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather tedious optimization procedures are applied that become computationally intractable on a large scale. Further, if one considers the constantly growing amount of data it is often infeasible to specify fully supervised labels for all data points. Instead, it is easier to specify labels in form of equivalence constraints. We introduce a simple though effective strategy to learn a distance metric from equivalence constraints, based on a statistical inference perspective. In contrast to
existing methods we do not rely on complex optimization problems requiring computationally expensive iterations. Hence, our method is orders of magnitudes faster than comparable methods. Results on a variety of challenging benchmarks with rather diverse nature demonstrate the power of our method. These include faces in unconstrained environments, matching before unseen object instances and person re-identification across spatially disjoint cameras. In the
latter two benchmarks we clearly outperform the state-ofthe-art.

KISS Metric Learning

假设差向量分别服从0均值的高斯分布(同类和异类),则用最大似然估计协方差矩阵。

时间: 2024-10-01 10:20:51

Large Scale Metric Learning from Equivalence Constraints (KISSME) CVPR 2012的相关文章

Lessons learned developing a practical large scale machine learning system

原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learned developing a practical large scale machine learning system Tuesday, April 06, 2010 Posted by Simon Tong, Google Research When faced with a hard pre

Machine Learning - XVII. Large Scale Machine Learning大规模机器学习 (Week 10)

http://blog.csdn.net/pipisorry/article/details/44904649 机器学习Machine Learning - Andrew NG courses学习笔记 Large Scale Machine Learning大规模机器学习 Learning With Large Datasets大数据集学习 Stochastic Gradient Descent随机梯度下降 Mini-Batch Gradient Descent迷你批处理梯度下降 Stochas

Week 10:Large Scale Machine Learning课后习题解答

大家好,我是Mac Jiang,今天和大家分享Coursera-Stanford University-Machine Learning-Week 10:Large Scale Machine Learning的课后习题解答.虽然我的答案通过了系统测试,但是我的分析不一定是正确的,如果各位博友发现错误或有更好的想法,请留言联系,谢谢.希望我的博客对您的学习有所帮助! 这单元,吴恩达老师主要讲了五个方面的内容: 1.随机梯度下降(Stochastic Gradient Descent),比较了随机

(原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以及应用实例:photo OCR.课程地址为:https://www.coursera.org/course/ml (一)大规模机器学习 从前面的课程我们知道,如果我们的系统是high variance的,那么增加样本数会改善我们的系统,假设现在我们有100万个训练样本,可想而知,如果使用梯度下降法,

Coursera机器学习-第十周-Large Scale Machine Learning

Gradient Descent with Large Datasets Learning With Large Datasets 我们已经知道,得到一个高效的机器学习系统的最好的方式之一是,用一个低偏差(low bias)的学习算法,然后用很多数据来训练它. 下面是一个区分混淆词组的例子: 但是,大数据存在一个问题,当样本容量m=1,000时还行,但是当m=100,000,000呢?请看一下梯度下降的更新公式: 计算一个θ值需要对1亿个数据进行求和,计算量显然太大,所以时间消耗肯定也就大了.

斯坦福第十七课:大规模机器学习(Large Scale Machine Learning)

17.1  大型数据集的学习 17.2  随机梯度下降法 17.3  微型批量梯度下降 17.4  随机梯度下降收敛 17.5  在线学习 17.6  映射化简和数据并行 17.1  大型数据集的学习 17.2  随机梯度下降法 17.3  微型批量梯度下降 17.4  随机梯度下降收敛 17.5  在线学习 17.6  映射化简和数据并行

Ng第十七课:大规模机器学习(Large Scale Machine Learning)

17.1  大型数据集的学习 17.2  随机梯度下降法 17.3  微型批量梯度下降 17.4  随机梯度下降收敛 17.5  在线学习 17.6  映射化简和数据并行 17.1  大型数据集的学习 17.2  随机梯度下降法 17.3  微型批量梯度下降 17.4  随机梯度下降收敛 17.5  在线学习 17.6  映射化简和数据并行

Coursera在线学习---第十节.大规模机器学习(Large Scale Machine Learning)

一.如何学习大规模数据集? 在训练样本集很大的情况下,我们可以先取一小部分样本学习模型,比如m=1000,然后画出对应的学习曲线.如果根据学习曲线发现模型属于高偏差,则应在现有样本上继续调整模型,具体调整策略参见第六节的高偏差时模型如何调整:如果发现模型属于高方差,则可以增加训练样本集. 二.随机梯度下降法(Stochastic Gradient Descent) 之前在讲到优化代价函数的时候,采取的都是"批量梯度下降法"Batch Gradient,这种方法在每次迭代的时候,都需要计

论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Google . 摘要:众所周