深度学习与模式识别之项目整理

深度学习与模式识别之项目整理

[email protected]

http://blog.csdn.net/luojun2007

作者:Luogz

声明:

本人一直从事图像处理,模式识别专业方向。该专业具有非常广的应用范围。我对这个专业有非常大的兴趣。本人承接各种与图像处理相关的项目,如您须要请联系我,谢谢!!

图像处理方向大概有下面等应用场景:

1) 智能交通

2) 日常智能产品应用

3)医学

4)工业

5)航空

以上领域。我基本都有涉及。熟悉图像增强、图像重建、人脸检測、人脸性别分类、年龄预计、人脸识别、人流量统计、缺陷检測、基于Adaboost的物体检測、多类物体分类、智能交通、视频背景建模、车牌识别、遗留物检測、视频质量诊断、美图,OCR字符识别、汽车定位、行人检測等等。

熟悉的算法:Adaboost训练器、svm、神经网络、深度学习算法(卷积神经网络)、贝叶斯算法、ELM、Gabor特征提取、LBP特征、sift特征、小波等。

以下介绍一些曾经做过的项目。

文件夹

一、麻将牌实时检測

二、生物及医学应用分析

三、人数统计

四、基于深度学习的字符识别

五、人脸性别分类

一、麻将牌实时检測

对摄像头拍摄的图片进行实时处理。输出麻将的定位区域,因为我们的视频是动的,比市场上的固定摄像头的操作难非常多。所以检測难度会加大,可是经过測试,设计的算法具有较高的检測率和文档性。算法是:机器学习 +先验信息融合的处理机制。

对各种环境下的视频进行測试,综合检測率在95%以上。

1、定位麻将

2、找出每张牌之间的逻辑位置关系

 
              

实例一

3、识别部分

看视频检測效果(请点击链接):http://v.youku.com/v_show/id_XODEyMDc0NjA0.html

二、生物及医学应用分析

1.    生物发酵分析

生物发酵过程中。须要人时常去观察发酵过程到哪个阶段?这浪费人力和物力,假设能用图像处理算法处理发酵监控摄像头返回的图像,那么就能够机器监控整个发酵过程。这个我曾经做过的一个小项目,主要是用来分析发酵图的数据,并画出发酵过程中的走势状态图。

依据以上信息来推断发酵过程是否达到了最佳时间。界面例如以下:

实例二

2.    医学3D图分析

分析三维图像中感兴趣区域。并加以分析。得出你想要的数据。

1、   对象:3D图形(血管)三视图(平面投影图像)中荧光绿色标注曲线(初步识别的血管中轴)的空间中轴坐标。

2、   输出结果:荧光绿色曲线(经初步识别的血管中轴)处理后的三维空间坐标。

3、   具体要求: 1.要求实现过程的具体步骤说明。

2.关键步奏须要图像便于验证。

3.空间坐标曲线如为非连续线状,需取中线。

注意:

最后得到的曲线应和原始三视图荧光绿曲线一样是连续曲线。没有尖锐毛刺(噪音),没有识别错误及识别脱漏。

其实的目的是为了对血管中轴(血管骨架)的空间坐标进行识别。

荧光绿色曲线是初步识别的血管中轴。

实例三

处理过程中提取血管的图像时。往往会得到断断续续的血管,例如以下:

 
                   
                

x, y轴平面投影切割图                                                3*3分区处理                                                 断线重连结果

以上处理过程用到数据拟合,曲线平滑等方向的一些知识。Matlab提供了强大的曲线拟合算法包含rubustfit、最小二乘、三次样条插值等。可是我是在vs2010上实现该程序的。因此并没有调用这这些函数。

程序最后的输出是:血管在3维中的坐标位置信息。

三、人数统计

我做过人流统计和车流统计,可是把这个拿出来的原因是,“教室人数统计”主要大家都比較熟悉。“教室人数统计”…..你可能想到的能够利用adaboost检測人脸再数个数。这样的方法是简单,可是不有用,你能够保证一定能够检測到人脸吗?我是利用Adaboost框架训练自己的人头检測XML。注意不是人脸-----可是这么做了。也有可能会检測错误,因此我再利用如今的热门算法,深度学习来对检測到的待选目标进行分类。然后推断出Adaboost检測的待选目标是否是人头,最后统计人头总数。

大家都知道深度学习的一个巨大优点就是:不用自己去苦苦提取特征,网络会依照它的设计原理自己主动提取特征,比方CNN(卷积神经网络),通过局部感受野、共享权值和亚取样来得到特征,而且该特征对位移、缩放、扭曲具有鲁棒性

详细參考:http://blog.csdn.net/celerychen2009/article/details/8973218

视图3.1

深度学习的效果和样本的丰富程度以及网络的深度有关系。可是并非网络的层数越多越好,深度学习的拥护者都是,不充分的深度反而影响效果。

Adaboost +深度学习框架的人数统计的效果图例如以下:

实例四

须要看视频效果的点击:http://v.youku.com/v_show/id_XODExODk3ODAw.html

四、基于深度学习的字符识别

OCR识别技术,如今已经比較成熟了。可是还是值得关注。有一位大牛提出了一种手写字符识别框架,叫“LeNet-5系统”效果和paper等见这。是利用深度学习的CNN来实现,原始LeNet-5结构不包括输入层就已经是7层网络结构。眼下基本都用简化的“LeNet-5系统”,该系统把下採样层和卷积层结合起来。避免了下採样层过多的參数学习过程,相同保留了对图像位移。扭曲的鲁棒性。

其网络结构图例如以下所看到的:

视图4.1

当年美国大多数银行就是用它来识别支票上面的手写数字的。可以达到这样的商用的地步。它的准确性可想而知。

毕竟眼下学术界和工业界的结合是最受争议的。他的效果图例如以下:

视图4.2

我依据这样的设计方案,实现了该“LeNet-5系统”。可是我的使用场景是扑克牌识别,并且应用在手抓牌上,不是眼下常使用的方法——把牌摆在牌桌上。

对照效果例如以下:

视图4.3   摆拍方式

实例五   手抓牌

五、人脸性别分类

人脸性别分类,我主要设计了两种方案:一、Gabor(多尺度。多方向特征提取)+ PCA + LDA + SVM。二、dense-Sift
+ LBP + PCA + LDA + SVM。

这两种设计方案各有千秋,可是共同点就是效果都还行。

对1W张室外人脸进行測试,前者能够达到87%~92%的识别率。后者能够达到93%~94%的识别率。至于我说两种各有特点的原因是。Gabor特征抗光照变化的能力比sift特征强,通常情况下Gabor特征方案比sift特征方案识别率低一些,可是对光线变化比較大的环境,Gabor方案还能够维持叫好的效果,可是sift特征方案的识别率速度降到60%~70%。因此看应用场景来採用哪种方案?

 
       

(a)                                                                                       (b)

实例六  性别分类

本人长期外接项目和程序设计,假设你有须要,请联系我:QQ:3158861394.

诚信为您服务!

时间: 2024-10-09 18:20:33

深度学习与模式识别之项目整理的相关文章

[转]机器学习、深度学习、数据挖掘各种资源整理

Deep Learning(深度学习): ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一 ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二 Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错. deeplearning.net主页,里面包含的信息量非常多,有software, reading list, research lab, dataset, demo等,

深度学习-目标函数的总结与整理

目标函数,或称损失函数,是网络中的性能函数,也是编译一个模型必须的两个参数之一.由于损失函数种类众多,下面以keras官网手册的为例. 在官方keras.io里面,有如下资料: mean_squared_error或mse mean_absolute_error或mae mean_absolute_percentage_error或mape mean_squared_logarithmic_error或msle squared_hinge hinge binary_crossentropy(亦称

安防大数据挖掘的利刃:模式识别和深度学习技术

人工智能的概念提出已经很多年,但最近一次大热是在“人机大战”战胜世界围棋高手李世石的AlphaGo.同样,近几年安防行业热门的深度学习和模式识别的概念也频频出现在公众的视野当中,那么它们是如何应用在安防领域中?目前最前沿的应用又有哪些?以下将为您一一解答. 安防大数据挖掘 平安城市从2010年在全国推广至今已经6年,目前各地平安城市建设即将进入扩容改建期,需要更加综合与智能的整体解决方案.公共安防已不再局限于扩张视频监控覆盖广度和密度以及清晰度,而是由扩密度的传统安防时代向注重视频大数据挖掘.使

深度学习在数据挖掘的应用

深度学习是我们明略重要的研究方向,是目前工业界学术界实现了很多令人惊叹功能的工具,也是通向人工智能的必经之路. 我们先来看看深度学习能做什么,Google研究的无人驾驶,其组件由两个部分组成,一个是眼睛,一个是大脑,眼睛是激光测距仪和视频摄像头,汽车收集到这些视频信号之后,并不能很好的识别,为了让汽车能理解我们需要一个大脑,这个大脑就是深度学习,通过深度学习我们可以告诉我们的车载的计算机,现在前面有什么样的物体,并且结构化的抽取出来. 比如说这个是通过挡风玻璃看到的画面,让机器理解,必须要判断视

整理:深度学习 vs 机器学习 vs 模式识别

发表于2015-03-24 22:58| 11934次阅读| 来源个人博客| 26 条评论| 作者Tomasz Malisiewicz 模式识别深度学习机器学习数据科学家 摘要:本文我们来关注下三个非常相关的概念(深度学习.机器学习和模式识别),以及他们与2015年最热门的科技主题(机器人和人工智能)的联系,让你更好的理解计算机视觉,同时直观认识机器学习的缓慢发展过程. [编者按]本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人Tomasz Malisiewicz的个人博客文

Deep Learning(深度学习)学习笔记整理系列 | @Get社区

body { font-family: Microsoft YaHei UI,"Microsoft YaHei", Georgia,Helvetica,Arial,sans-serif,宋体, PMingLiU,serif; font-size: 10.5pt; line-height: 1.5; } html, body { } h1 { font-size:1.5em; font-weight:bold; } h2 { font-size:1.4em; font-weight:bo

Deep Learning(深度学习)学习笔记整理系列七

Deep Learning(深度学习)学习笔记整理系列 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢. 4)阅读本文需要机器学习.计算机视觉.神经网络等等基础(如果没有也没关系了,没

随时更新———个人喜欢的关于模式识别、机器学习、推荐系统、图像特征、深度学习、数值计算、目标跟踪等方面个人主页及博客

目标检測.识别.分类.特征点的提取 David Lowe:Sift算法的发明者,天才. Rob Hess:sift的源代码OpenSift的作者,个人主页上有openSift的下载链接.Opencv中sift的实现.也是參考这个. Koen van de Sande:作者给出了sift,densesift,colorsift等等经常使用的特征点程序.输出格式见个人主页说明,当然这个特征点的算法,在Opencv中都有实现. Ivan Laptev:作者给出了物体检測等方面丰富C\C++源代码,及部

Deep Learning(深度学习)学习笔记整理系列之(四)——CNN

[email protected] http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-04-08 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈