一、概述
MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的。在我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求。对于二次排序的实现,网络上已经有很多人分享过了,但是对二次排序的实现的原理以及整个MapReduce框架的处理流程的分析还是有非常大的出入,而且部分分析是没有经过验证的。本文将通过一个实际的MapReduce二次排序例子,讲述二次排序的实现和其MapReduce的整个处理流程,并且通过结果和map、reduce端的日志来验证所描述的处理流程的正确性。
二、需求描述
1、输入数据:
sort1 1
sort2 3
sort2 77
sort2 54
sort1 2
sort6 22
sort6 221
sort6 20
2、目标输出
sort1 1,2
sort2 3,54,77
sort6 20,22,221
三、解决思路
1、首先,在思考解决问题思路时,我们先应该深刻的理解MapReduce处理数据的整个流程,这是最基础的,不然的话是不可能找到解决问题的思路的。我描述一下MapReduce处理数据的大概简单流程:首先,MapReduce框架通过getSplit方法实现对原始文件的切片之后,每一个切片对应着一个map task,inputSplit输入到Map函数进行处理,中间结果经过环形缓冲区的排序,然后分区、自定义二次排序(如果有的话)和合并,再通过shuffle操作将数据传输到reduce task端,reduce端也存在着缓冲区,数据也会在缓冲区和磁盘中进行合并排序等操作,然后对数据按照Key值进行分组,然后每处理完一个分组之后就会去调用一次reduce函数,最终输出结果。大概流程我画了一下,如下图:
2、具体解决思路
(1)Map端处理:
根据上面的需求,我们有一个非常明确的目标就是要对第一列相同的记录合并,并且对合并后的数字进行排序。我们都知道MapReduce框架不管是默认排序或者是自定义排序都只是对Key值进行排序,现在的情况是这些数据不是key值,怎么办?其实我们可以将原始数据的Key值和其对应的数据组合成一个新的Key值,然后新的Key值对应的还是之前的数字。那么我们就可以将原始数据的map输出变成类似下面的数据结构:
{[sort1,1],1}
{[sort2,3],3}
{[sort2,77],77}
{[sort2,54],54}
{[sort1,2],2}
{[sort6,22],22}
{[sort6,221],221}
{[sort6,20],20}
那么我们只需要对[]里面的新key值进行排序就ok了。然后我们需要自定义一个分区处理器,因为我的目标不是想将新key相同的传到同一个reduce中,而是想将新key中的第一个字段相同的才放到同一个reduce中进行分组合并,所以我们需要根据新key值中的第一个字段来自定义一个分区处理器。通过分区操作后,得到的数据流如下:
Partition1:{[sort1,1],1}、{[sort1,2],2}
Partition2:{[sort2,3],3}、{[sort2,77],77}、{[sort2,54],54}
Partition3:{[sort6,22],22}、{[sort6,221],221}、{[sort6,20],20}
分区操作完成之后,我调用自己的自定义排序器对新的Key值进行排序。
{[sort1,1],1}
{[sort1,2],2}
{[sort2,3],3}
{[sort2,54],54}
{[sort2,77],77}
{[sort6,20],20}
{[sort6,22],22}
{[sort6,221],221}
(2)Reduce端处理:
经过Shuffle处理之后,数据传输到Reducer端了。在Reducer端对按照组合键的第一个字段来进行分组,并且没处理完一次分组之后就会调用一次reduce函数来对这个分组进行处理输出。最终的各个分组的数据结构变成类似下面的数据结构:
{[sort1,2],[1,2]}
{[sort2,77],[3,54,77]}
{[sort6,221],[20,22,221]}
看到了这个最终的分组,很可能会有人会怀疑:为什么分组过后的key会变成这样?其实是这样的,数据通过排序之后会在reduce端进行分组,而且进入到分组函数的数据是已经经过排序的,我们拿第一个分组输入来说:{[sort1,1],1}、{[sort1,2],2}。当这2组数依次进入到分组函数,我们自定义的分组函数将组合key的第一个值作为分组key,然后进行合并,之后分组后数据变成:{[sort1,?],[1,2]},这了的?是究竟应该是什么值,MapReduce框架在分组的时候因为需要合并所以按照进入分组函数的顺序最后一个进入的则会成为这个分组后key的一部分,即为{[sort1,2],[1,2]}。文章最后面也做了验证,情况reduce端的日志信息。
四、具体实现
1、自定义组合键
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
说明:在自定义组合键的时候,我们需要特别注意,一定要实现WritableComparable接口,并且实现compareTo方法的比较策略。这个用于mapreduce的第一次默认排序,也就是发生在map阶段的sort小阶段,发生地点为环形缓冲区(可以通过io.sort.mb进行大小调整),但是其对我们最终的二次排序结果是没有影响的。我们二次排序的最终结果是由我们的自定义比较器决定的。
2、自定义分区器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
|
说明:具体说明看代码注释。
3、自定义比较器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
说明:自定义比较器决定了我们二次排序的结果。自定义比较器需要继承WritableComparator类,并且重写compare方法实现自己的比较策略。具体的排序问题请看注释。
4、自定义分组策略
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
5、主体程序实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|