shuffle和sort分析

MapReduce中的Shuffle和Sort分析

MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据。第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Scheme,ML 等。MapReduce 框架的核心步骤主要分两部分:Map 和Reduce。当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执行,每一个Map 任务处理输入数据中的一部分,当Map 任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce 任务的输入数据。Reduce 任务的主要目标就是把前面若干个Map 的输出汇总到一起并输出。从高层抽象来看,MapReduce的数据流图如图1 所示:

本文的重点是剖析MapReduce的核心过程----Shuffle和Sort。在本文中,Shuffle是指从Map产生输出开始,包括系统执行排序以及传送Map输出到Reducer作为输入的过程。在这里我们将去探究Shuffle是如何工作的,因为对基础的理解有助于对MapReduce程序进行调优。

首先从Map端开始分析,当Map开始产生输出的时候,他并不是简单的把数据写到磁盘,因为频繁的操作会导致性能严重下降,他的处理更加复杂,数据首先是写到内存中的一个缓冲区,并作一些预排序,以提升效率,如图:

每个Map任务都有一个用来写入输出数据的循环内存缓冲区,这个缓冲区默认大小是100M,可以通过io.sort.mb属性来设置具体的大小,当缓冲区中的数据量达到一个特定的阀值(io.sort.mb * io.sort.spill.percent,其中io.sort.spill.percent 默认是0.80)时,系统将会启动一个后台线程把缓冲区中的内容spill 到磁盘。在spill过程中,Map的输出将会继续写入到缓冲区,但如果缓冲区已经满了,Map就会被阻塞直道spill完成。spill线程在把缓冲区的数据写到磁盘前,会对他进行一个二次排序,首先根据数据所属的partition排序,然后每个partition中再按Key排序。输出包括一个索引文件和数据文件,如果设定了Combiner,将在排序输出的基础上进行。Combiner就是一个Mini Reducer,它在执行Map任务的节点本身运行,先对Map的输出作一次简单的Reduce,使得Map的输出更紧凑,更少的数据会被写入磁盘和传送到Reducer。Spill文件保存在由mapred.local.dir指定的目录中,Map任务结束后删除。

每当内存中的数据达到spill阀值的时候,都会产生一个新的spill文件,所以在Map任务写完他的最后一个输出记录的时候,可能会有多个spill文件,在Map任务完成前,所有的spill文件将会被归并排序为一个索引文件和数据文件。如图3 所示。这是一个多路归并过程,最大归并路数由io.sort.factor 控制(默认是10)。如果设定了Combiner,并且spill文件的数量至少是3(由min.num.spills.for.combine 属性控制),那么Combiner 将在输出文件被写入磁盘前运行以压缩数据。

对写入到磁盘的数据进行压缩(这种压缩同Combiner 的压缩不一样)通常是一个很好的方法,因为这样做使得数据写入磁盘的速度更快,节省磁盘空间,并减少需要传送到Reducer 的数据量。默认输出是不被压缩的, 但可以很简单的设置mapred.compress.map.output为true 启用该功能。压缩所使用的库由mapred.map.output.compression.codec来设定

当spill 文件归并完毕后,Map 将删除所有的临时spill 文件,并告知TaskTracker 任务已完成。Reducers 通过HTTP 来获取对应的数据。用来传输partitions 数据的工作线程个数由tasktracker.http.threads 控制,这个设定是针对每一个TaskTracker 的,并不是单个Map,默认值为40,在运行大作业的大集群上可以增大以提升数据传输速率。

现在让我们转到Shuffle的Reduce部分。Map的输出文件放置在运行Map任务的TaskTracker的本地磁盘上(注意:Map输出总是写到本地磁盘,但是Reduce输出不是,一般是写到HDFS),它是运行Reduce任务的TaskTracker所需要的输入数据。Reduce任务的输入数据分布在集群内的多个Map任务的输出中,Map任务可能会在不同的时间内完成,只要有其中一个Map任务完成,Reduce任务就开始拷贝他的输出。这个阶段称为拷贝阶段,Reduce任务拥有多个拷贝线程,可以并行的获取Map输出。可以通过设定mapred.reduce.parallel.copies来改变线程数。

Reduce是怎么知道从哪些TaskTrackers中获取Map的输出呢?当Map任务完成之后,会通知他们的父TaskTracker,告知状态更新,然后TaskTracker再转告JobTracker,这些通知信息是通过心跳通信机制传输的,因此针对以一个特定的作业,jobtracker知道Map输出与tasktrackers的映射关系。Reducer中有一个线程会间歇的向JobTracker询问Map输出的地址,直到把所有的数据都取到。在Reducer取走了Map输出之后,TaskTracker不会立即删除这些数据,因为Reducer可能会失败,他们会在整个作业完成之后,JobTracker告知他们要删除的时候才去删除。

如果Map输出足够小,他们会被拷贝到Reduce TaskTracker的内存中(缓冲区的大小由mapred.job.shuffle.input.buffer.percnet控制),或者达到了Map输出的阀值的大小(由mapred.inmem.merge.threshold控制),缓冲区中的数据将会被归并然后spill到磁盘。

拷贝来的数据叠加在磁盘上,有一个后台线程会将它们归并为更大的排序文件,这样做节省了后期归并的时间。对于经过压缩的Map 输出,系统会自动把它们解压到内存方便对其执行归并。

当所有的Map 输出都被拷贝后,Reduce 任务进入排序阶段(更恰当的说应该是归并阶段,因为排序在Map 端就已经完成),这个阶段会对所有的Map 输出进行归并排序,这个工作会重复多次才能完成。

假设这里有50 个Map 输出(可能有保存在内存中的),并且归并因子是10(由io.sort.factor控制,就像Map 端的merge 一样),那最终需要5 次归并。每次归并会把10个文件归并为一个,最终生成5 个中间文件。在这一步之后,系统不再把5 个中间文件归并成一个,而是排序后直接“喂”给Reduce 函数,省去向磁盘写数据这一步。最终归并的数据可以是混合数据,既有内存上的也有磁盘上的。由于归并的目的是归并最少的文件数目,使得在最后一次归并时总文件个数达到归并因子的数目,所以每次操作所涉及的文件个数在实际中会更微妙些。譬如,如果有40 个文件,并不是每次都归并10 个最终得到4 个文件,相反第一次只归并4 个文件,然后再实现三次归并,每次10 个,最终得到4 个归并好的文件和6 个未归并的文件。要注意,这种做法并没有改变归并的次数,只是最小化写入磁盘的数据优化措施,因为最后一次归并的数据总是直接送到Reduce 函数那里。在Reduce 阶段,Reduce 函数会作用在排序输出的每一个key 上。这个阶段的输出被直接写到输出文件系统,一般是HDFS。在HDFS 中,因为TaskTracker 节点也运行着一个DataNode 进程,所以第一个块备份会直接写到本地磁盘。到此,MapReduce 的Shuffle 和Sort 分析完毕。

时间: 2024-10-10 05:19:27

shuffle和sort分析的相关文章

mapreduce shuffle 和sort 详解

    MapReduce 框架的核心步骤主要分两部分:Map 和Reduce.当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执行,每一个Map 任务处理输入数据中的一部分,当Map 任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce 任务的输入数据.Reduce 任务的主要目标就是把前面若干个Map 的输出汇总到一起并输出. 本文的重点是剖析MapReduce 的核心过程--Shuffle和Sort.在本文

stl sort分析

最近写代码,无意中发现了一个坑,关于自定义比较函数的stl sort函数的坑,于是记录下来. 先贴代码: 1 #include <iostream> 2 #include <vector> 3 #include <algorithm> 4 5 struct finder 6 { 7 bool operator()(int first, int second){return first <= second;} 8 } my_finder; 9 10 int main

Hadoop中shuffle阶段流程分析

Hadoop中shuffle阶段流程分析 MapReduce  longteng  9个月前 (12-23)  399浏览  0评论 宏观上,Hadoop每个作业要经历两个阶段:Map phase和reduce phase.对于Map phase,又主要包含四个子阶段:从磁盘上读数据->执行map函数->combine结果->将结果写到本地磁盘上:对于reduce phase,同样包含四个子阶段:从各个map task上读相应的数据(shuffle)->sort->执行red

Hadoop-2.2.0中文文档—— MapReduce下一代- 可插入的 Shuffle 和 Sort

简介 可插入的 shuffle 和 sort 功能,允许在shuffle 和 sort 逻辑中用可选择的实现类替换.这个情况的例子是:用一个不是HTTP的应用协议,如RDMA来 shuffle 从Map节点中到Reducer节点的数据:或者用自定义的允许 Hash聚合和Limit-N查询的算法来代替sort逻辑. 重要: 可插入的 shuffle  sort 功能是实验性的.不稳定.这意味着提供的API可能改变或破坏未来Hadoop版本的兼容性. 实现一个自定义的 Shuffle 和 Sort

hadoop之Shuffle和Sort

MapRduce保证reducer的输入是按照key进行排过序的,原因和归并排序有关,在reducer接收到不同的mapper输出的有序数据后,需要再次进行排序,然后是分组排序,如果mapper输出的是有序数据,将减少reducer阶段排序的时间消耗.一般将排序以及Map的输出传输到Reduce的过程称为混洗(shuffle).Shuffle是MapReduce过程的核心,了解Shuffle非常有助于理解MapReduce的工作原理.如果你不知道MapReduce里的Shuffle是什么,那么请

vs2013 std::sort 分析

由于之前在debug模式下发现stl的sort简直慢到不能忍,所以自己写了一个sgi的sort,后来发现在release模式下,vs自带的sort快的不行,就研究了下. 这里有些和sgi-stl相通的东西就简略带过了,详细内容可以看我之前的stl源码的笔记: sgi-sort_link 首先来看下大概的过程: 1.没有调用到一定深度时,就进行划分并进行递归调用. 2.如果超过了一定深度时,这个区间改为调用堆排序.(这一部待商榷) 3.对剩下的小于32长度的区间进行插入排序. 接下来是详细分析:

Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card from the deck and returns it. The list method pop provides a convenient way to do that. Since pop removes the last card in the list, we are in effect dealing from the bottom of the deck. To ad

MapReduce Shuffle And Sort

引言   MapReduce作出保证:进入每个Reducer的数据行都是有序的(根据数据行的键值进行排序).MapReduce将Mapper的输出进行排序并传递给Reducer作为输入的过程称为Shuffle.在很多场景下,Shuffle是整个MapReduce过程的核心,也是“奇迹”发生的地方,如下图所示: 理解Shuffle的执行过程对我们优化MapReduce任务带来帮助.这里以Hadoop 0.20.2代码为基础进行介绍,同时也会涉及到如何扩展MapReduce组件,从而影响Shuffe

Hadoop 1.x的Shuffle源码分析之3

shuffle有两种,一种是在内存存储数据,另一种是在本地文件存储数据,两者几乎一致. 以本地文件进行shuffle的过程为例: mapOutput = shuffleToDisk(mapOutputLoc, input, filename, compressedLength) shuffleToDisk函数如下: private MapOutput shuffleToDisk(MapOutputLocation mapOutputLoc, InputStream input, Path fil