算法的时间复杂度和空间复杂度

<算法的时间复杂度和空间复杂度合称为算法的复杂度>

--->算法的时间复杂度

(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

时间频度不同,但时间复杂度可能相同。如:T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

(3)最坏时间复杂度和平均时间复杂度  最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。

在最坏情况下的时间复杂度为T(n)=0(n),它表示对于任何输入实例,该算法的运行时间不可能大于0(n)。 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。

指数阶0(2n),显然,时间复杂度为指数阶0(2n)的算法效率极低,当n值稍大时就无法应用。

(4)求时间复杂度

【1】如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

x=91; y=100;
while(y>0) if(x>100) {x=x-10;y--;} else x++;
解答: T(n)=O(1),
这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有?
没。这段程序的运行是和n无关的,
就算它再循环一万年,我们也不管他,只是一个常数阶的函数

【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

x=1;

for(i=1;i<=n;i++)

for(j=1;j<=i;j++)

for(k=1;k<=j;k++)

x++;   

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:当i=m时, j 可以取0,1,...,m-1 ,  所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6次,故该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)。

时间: 2024-10-25 12:27:31

算法的时间复杂度和空间复杂度的相关文章

[算法技术]算法的时间复杂度与空间复杂度

1.时间复杂度 算法的时间复杂度是衡量一个算法效率的基本方法.在阅读其他算法教程书的时候,对于算法的时间复杂度的讲解不免有些生涩,难以理解.进而无法在实际应用中很好的对算法进行衡量.            <大话数据结构>一书在一开始也针对算法的时间复杂度进行了说明.这里的讲解就非常明确,言简意赅,很容易理解.下面通过<大话数据结构>阅读笔记的方式,通过原因该书的一些简单的例子和说明来解释一下算法的时间复杂度和它的计算方法.          首先从基本定义下手,来了解一下什么是“

算法的时间复杂度和空间复杂度合称为算法的复杂度

算法的时间复杂度和空间复杂度合称为算法的复杂度. 1.时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n). (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时

【计算机基础】 常用的排序算法的时间复杂度和空间复杂度

常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 O(n2) O(n*log2n) 不稳定 O(log2n)~O(n) 选择排序 O(n2) O(n2) 稳定 O(1) 二叉树排序 O(n2) O(n*log2n) 不一顶 O(n) 插入排序 O(n2) O(n2) 稳定 O(1) 堆排序 O(n*log2n) O(n*log2n) 不稳定 O(1) 希尔排序 O O 不稳定 O(1) 1

算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度-总结 通常,对于一个给定的算法,我们要做 两项分析.第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式.数学归纳法等.而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度.算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否.因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的.       算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量

算法的时间复杂度和空间复杂度详解

通常,对于一个给定的算法,我们要做 两项分析.第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式.数学归纳法等.而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度.算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否.因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的.       算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量.而度量一个程序的执行时间通常有两种

C#中常用的排序算法的时间复杂度和空间复杂度

常用的排序算法的时间复杂度和空间复杂度 常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 O(n2) O(n*log2n) 不稳定 O(log2n)~O(n) 选择排序 O(n2) O(n2) 稳定 O(1) 二叉树排序 O(n2) O(n*log2n) 不一顶 O(n) 插入排序 O(n2) O(n2) 稳定 O(1) 堆排序 O(n*log2n) O(n*log2n) 不稳定 O(1)

转 算法的时间复杂度和空间复杂度-总结

http://blog.csdn.net/zolalad/article/details/11848739 通常,对于一个给定的算法,我们要做 两项分析.第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式.数学归纳法等.而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度.算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否.因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的.      

常用的排序、查找算法的时间复杂度和空间复杂度

常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 插入排序 O(n2) O(n2) 稳定 O(1) 选择排序 O(n2) O(n2) 稳定 O(1) 二叉树排序 O(n2) O(n*log2n) 不一顶 O(n) 快速排序 O(n2) O(n*log2n) 不稳定 O(log2n)~O(n) 堆排序 O(n*log2n) O(n*log2n) 不稳定 O(1) 希尔排序 O O 不稳定 O(1) 查

算法的时间复杂度和空间复杂度分析

一 算法的时间复杂度分析 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n). (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化.但有时我们想