自然语言处理(nlp)比计算机视觉(cv)发展缓慢,而且更难!

https://mp.weixin.qq.com/s/kWw0xce4kdCx62AflY6AzQ

1.  抢跑的nlp

nlp发展的历史非常早,因为人从计算机发明开始,就有对语言处理的需求。各种字符串算法都贯穿于计算机的发展历史中。伟大的乔姆斯基提出了生成文法,人类拥有的处理语言的最基本框架,自动机(正则表达式),随机上下文无关分析树,字符串匹配算法KMP,动态规划。

nlp任务里如文本分类,成熟的非常早,如垃圾邮件分类等,用朴素贝叶斯就能有不错的效果。20年前通过纯统计和规则都可以做机器翻译了。相比,在cv领域,那时候mnist分类还没搞好呢。

90年代,信息检索的发展提出BM25等一系列文本匹配算法,Google等搜索引擎的发展将nlp推向了高峰。相比CV领域暗淡的一些。

2.  特征抽取困难的cv

cv的前身就有一个领域叫图像处理,研究图片的压缩、滤波、边缘提取,天天摆弄着一个叫lenna的美女。

早期的计算机视觉领域受困于特征提取的困难,无论是HOG还是各种手工特征提取,都没办法取得非常好的效果。

大规模商业化应用比较困难。而同期nlp里手工特征?svm已经搞的风生水起了。

3.  深度学习的崛起- 自动特征提取

近些年,非常火爆的深度学习模型简单可以概括为:

深度学习 = 特征提取器?分类器

一下子解决cv难于手工提取特征的难题,所以给cv带来了爆发性的进展。深度学习的思路就是让模型自动从数据中学习特征提取,从而生成了很多人工很难提取的特征:

4.  nlp的知识困境

不是说nlp在这波深度学习浪潮下没有进展,而是说突破并没有cv那么巨大。很多文本分类任务,你用一个巨复杂的双向LTSM的效果,不见得比好好做手工feature + svm好多少,而svm速度快、小巧、不需要大量数据、不需要gpu,很多场景真不见得深度学习的模型就比svm、gbdt等传统模型就好用。

而nlp更大的难题在于知识困境。不同于cv的感知智能,nlp是认知智能,认知就必然涉及到知识的问题,而知识却又是最离散最难于表示的。

原文地址:https://www.cnblogs.com/DicksonJYL/p/9907520.html

时间: 2024-10-08 07:39:22

自然语言处理(nlp)比计算机视觉(cv)发展缓慢,而且更难!的相关文章

自然语言处理(NLP) - 数学基础(1) - 总述

正如我在<2019年总结>里说提到的, 我将开始一系列自然语言处理(NLP)的笔记. 很多人都说, AI并不难啊, 调现有库和云的API就可以啦. 然而实际上并不是这样的. 首先, AI这个领域十分十分大, 而且从1950年图灵提出图灵测试, 1956年达特茅斯会议开始, AI已经发展了五十多年了, 学术界有的认为有六个时期, 有的认为有三起二落. 所以Ai发展到今天, 已经有相当的规模了, 不可能有一个人熟悉AI的所有领域, 最多也就是熟悉相关联的几个领域, 比如NLP和OCR以及知识图谱相

自然语言理解——NLP中的形式语言自动机

1.形式语言:是用来精确地描述语言(包括人工语言和自然语言)及其结构的手段.形式语言学 也称代数语言学. 2.自动机:识别器是有穷地表示无穷语言的另一种方法.每一个语言的句子都能被一定的识别器所接受. *有限状态转换机(FST) 除了前面提到的单词拼写检查.词法分析.词性标注等工作以外,有限状态自动机还广泛地应用于句法分析.短语识别.机器翻译和语音识别等很多方面. 自然语言理解--NLP中的形式语言自动机,布布扣,bubuko.com

众多因素制约 谈锂电池技术为何发展缓慢

在过去近七年间,手机完成了从功能机到智能机的蜕变,手机在生活中的作用正变得越来越重要.不过,手机的发展日新月异,性能等方面都获得突飞猛进的发展,唯独电池技术一直发展缓慢,这也成为制约手机更进一步发展的重要原因. 发展史及现状 锂电池最早期应用在心脏起搏器中.锂电池的自放电率极低,放电电压平缓等优点,使得植入人体的起搏器能够长期运作而不用重新充电.锂电池一般有高于3.0伏的标称电压,更适合作集成电路电源. 1991年Sony成功开发锂离子电池.它的商用化,使人们的移动电话.笔记本.计算器等携带型电

自然语言处理NLP快速入门

https://mp.weixin.qq.com/s/J-vndnycZgwVrSlDCefHZA [导读]自然语言处理已经成为人工智能领域一个重要的分支,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法.本文提供了一份简要的自然语言处理介绍,帮助读者对自然语言处理快速入门. 作者 | George Seif 编译 | Xiaowen An easy introduction to Natural Language Processing Using computers to un

国内知名的自然语言处理(NLP)团队

工业界 腾讯人工智能实验室(Tencent AI Lab) 百度自然语言处理(Baidu NLP):对外提供了百度AI开放平台,王海峰(现任百度副总裁,AI技术平台体系AIG总负责人) 微软亚洲研究院自然语言计算组(Natural Language Computing - Microsoft Research).在NLP方向与哈工大.清华有联合实验室 科大讯飞(与哈工大的语言认知计算联合实验室) 搜狗实验室(Sogou Labs) 头条人工智能实验室(Toutiao AI Lab) 华为诺亚方舟

自然语言处理(NLP) - 数学基础(1) - 排列组合

正如我在<自然语言处理(NLP) - 数学基础(1) - 总述>一文中所提到的NLP所关联的概率论(Probability Theory)知识点是如此的多, 饭只能一口一口地吃了, 我们先开始最为大家熟知和最基础的知识点吧, 排列组合. 虽然排列组合这个知识点大家是相当地熟知, 也是相当地基础, 但是却是十分十分十分地重要. NLP届掌门人斯坦福大学的Daniel Jurafsky(D. 朱夫斯凯)和科罗拉多大学James H. Martin(J. H. 马丁)在其NLP巨作<自然语言处

自然语言处理NLP(一)

NLP 自然语言:指一种随着社会发展而自然演化的语言,即人们日常交流所使用的语言: 自然语言处理:通过技术手段,使用计算机对自然语言进行各种操作的一个学科: NLP研究的内容 词意消歧: 指代理解: 自动生成语言: 机器翻译: 人机对话系统: 文本含义识别: NLP处理 语料读入 网络 本地 分词 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018-9-28 22:21 # @Author : Manu # @Site : #

Java自然语言处理NLP工具包

自然语言处理 1. Java自然语言处理 LingPipe LingPipe是一个自然语言处理的Java开源工具包.LingPipe目前已有很丰富的功能,包括主题分类(Top Classification).命名实体识别(Named Entity Recognition).词性标注(Part-of Speech Tagging).句题检测(Sentence Detection).查询拼写检查(Query Spell Checking).兴趣短语检测(Interseting Phrase Dete

物联网在消费领域为什么发展缓慢

原文地址 物联网概念不算一个新鲜词,物联网一直被认为是"下一个工业革命",因为它即将改变人们的生活.工作.娱乐和旅行方式,甚至改变全球政府及企业之间的交互.我们熟知的射频识别.红外感应.GPS.二维码等技术都可以算作物联网的范畴.在应用层面,工业领域比较多,除此之外,普通人比较熟悉的还有智能穿戴.智能家居等领域.物联网智能家居物联网的各大领域之前被称为"智慧XX", 食有智慧农业.衣有穿戴式设备.住有智能家居.行有车联网与智慧交通.育有智慧教育.乐有智慧旅游.生产有