【模式识别与机器学习】——3.3分段线性判别函数

---恢复内容开始---

出发点:

  线性判别函数在进行分类决策时是最简单有效的,但在实际应用中,常常会出现不能用线性判别函数直接进行分类的情况。 采用广义线性判别函数的概念,可以通过增加维数来得到线性判别,但维数的大量增加会使在低维空间里在解析和计算上行得通的方法在高维空间遇到困难,增加计算的复杂性。 引入分段线性判别函数的判别过程,它比一般的线性判别函数的错误率小,但又比非线性判别函数简单。

图例:

  用判别函数分类 可用一个二次判别函数来分类 也可用一个分段线性判别函数来逼近这个二次曲线

分段线性判别函数的设计

(1)采用最小距离分类的方法

图例:分段线性分类设计

3.4 模式空间和权空间

模式空间 :

  对一个线性方程w1x1+w2x2+w3x3=0,它在三维空间(x1 x2 x3)中是一个平面方程式,w=(w1 w2 w3)T是方程的系数。 把w向量作为该平面的法线向量,则该线性方程决定的平面通过原点且与w垂直。若x是二维的增广向量,此时x3=1,则在非增广的模式空间中即为{x1, x2 }二维坐标,判别函数是下列联立方程的解

(a)增广向量决定的平面 (b)非增广向量决定的直线

权空间:

若将方程x1w1+x2w2+w3=0绘在权向量w=(w1 w2 w3)T的三维空间中,则x=(x1 x2 1)T为方程的系数。 若以x向量作为法线向量,则该线性方程所决定的平面为通过原点且与法线向量垂直的平面,它同样将权空间划分为正、负两边。 在系数x不变的条件下,若w值落在法线向量离开平面的一边,则wTx>0,若w值落在法线向量射向平面的一边,则wTx <0。

权空间中判别界面的平面示意图

原文地址:https://www.cnblogs.com/chihaoyuIsnotHere/p/9754581.html

时间: 2024-10-28 22:48:33

【模式识别与机器学习】——3.3分段线性判别函数的相关文章

【模式识别与机器学习】——3.1线性判别函数

3.1线性判别函数 3.1.1两类问题的判别函数 (1)以二维模式样本为例 若x是二维模式样本x = (x1 x2)T,用x1和x2作为坐标分量,得到模式的平面图: 这时,若这些分属于ω1和ω2两类的模式可用一个直线方程d(x)=0来划分 d(x) = w1x1 + w2x2 + w3 = 0 其中x1.x2为坐标变量,w1.w2.w3为参数方程,则将一个不知类别的模式代入d(x),有 - 若d(x) > 0,则 - 若d(x) < 0,则 此时,d(x)=0称为判别函数. (2)用判别函数进

哈尔滨工业大学计算机学院-模式识别-课程总结(三)-线性判别函数

1. 线性判别函数 本章介绍的线性判别函数都归属于判别式模型,即对于分类问题,根据判别函数\(g(x)\)的取值进行判断,比如正数归为第一类,负数与零归为第二类.关于判别式模版与生成式模型的区别可以阅读我以前的[博客])(https://www.cnblogs.com/szxspark/p/8426850.html),最典型的生成式模型是贝叶斯分类器,这个在之前的博客中也有介绍. 在介绍具体算法之前,先了解一下线性判别函数的基本概念. 1.2 线性判别函数基本概念 对于线性可分情况,线性判别函数

机器学习 —— 基础整理(六):线性判别函数——感知器、松弛算法、Ho-Kashyap算法

本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 (一)线性判别函数与广义线性判别函数 一.线性判别函数 这篇总结继续关注分类问题.假设判别函数(Discriminant function)的参数形式已知,用训练的方法直接根据样本估计判别函数的参数.线性判别函数的形式为: $$g(\textbf x)=\textbf w^{\top}\textbf x+w_0$$ $\textbf x\in \mathbb R^d$ 是

3.1线性判别函数【模式识别】

用判别函数分类的概念 首先模式识别系统的主要作用是:判别各个模式所属的类别,例如对一个两类问题的判别,就是将模式x划分为成ω1和ω2两类. 两类问题的判别函数(以二维模式样本为例) 若x是二维模式样本x = (x1 x2)T,用x1和x2作为坐标分量,得到模式的平面图: 这时,若这些分属于ω1和ω2两类的模式可用一个直线方程d(x)=0来划分 d(x) = w1x1 + w2x2 + w3 = 0 其中x1.x2为坐标变量,w1.w2.w3为参数方程,则将一个不知类别的模式代入d(x),有 -

模式识别(Pattern Recognition)学习笔记(七)——线性分类器及线性判别函数

1.为什么要设计分类器? 回顾下前面学习的统计决策,也就是贝叶斯决策,它可以简单被划分为两步,首先根据样本进行PDF估计,然后根据估计出的PDF来求分类面,因此又经常被叫做两步贝叶斯决策.如果我们能够很好地估计出PDF模型,也总可以利用贝叶斯来实现两类甚至多类的最优分类,但是很多实际情形中,想要精准的估计出PDF模型,并非易事,尤其当样本存在高维特征空间,以及样本数量并不足够多的情况,本质上来说,模式识别的真正目的并非估计PDF模型,而是在特征空间中想方设法找到各类的分界线或分界面.因此,如果可

Bishop的大作《模式识别与机器学习》Ready to read!

久仰Bishop的大作“Pattern Recognition and Machine Learning”已久,在我的硬盘里已经驻扎一年有余,怎奈惧其页数浩瀚,始终未敢入手.近日看文献,屡屡引用之.不得不再翻出来准备细读一番.有条件的话也要写写读书笔记的,要不基本上也是边看边忘. 我在V盘分享了pdf: http://vdisk.weibo.com/s/oM0W7 Bishopde网页,这里可以下载PPT和程序: http://research.microsoft.com/en-us/um/pe

线性判别函数-Fisher 线性判别

这是我在上模式识别课程时的内容,也有参考这里. 线性判别函数的基本概念 判别函数为线性的情况的一般表达式 式中x是d 维特征向量,又称样本向量, 称为权向量, 分别表示为 是个常数,称为阈值权. 设样本d维特征空间中描述,则两类别问题中线性判别函数的一般形式可表示成 (3-1) 其中 而ω0是一个常数,称为阈值权.相应的决策规则可表示成, g(X)=0就是相应的决策面方程,在线性判别函数条件下它对应d维空间的一个超平面,   (3-3) 为了说明向量W的意义,我们假设在该决策平面上有两个特征向量

《模式识别和机器学习》资源

<模式识别和机器学习>资源 Bishop的<模式识别和机器学习>是该领域的经典教材,本文搜罗了有关的教程和读书笔记,供对比学习之用,主要搜索的资源包括CSDN:http://download.csdn.net/search?q=PRML  ,Memect:http://ml.memect.com/search/?q=PRML .另外就是百度和谷歌了. 1:<Pattern Recognition and Machine Learning> 作者主页 .PRML作者Chr

模式识别和机器学习、数据挖掘的区别与联系(转发)

和晨枫老大在这个帖子里关于工程科研和工业实践的脱节从控制侃到了模式识别和机器学习,老大让俺写写.真让俺惶惶然啊!俺这土鳖来在了(liao3)西西河,那就是学习来了,潜水看老大们的帖子为主,偶尔发言也不敢谈专业,怕贻笑大方.不过老大既然说了,那我就来试着说说我所理解的这方面的概念关系,可能也能说到方法和思路.权当是俺这几年的对这些领域的认识心得,和学习总结吧. 说到机器学习和数据挖掘,不能不提到自动控制和模式识别乃至人工智能.刚开始接触这些名字的时候,真是云山雾罩.反俺正考大学是听着自动化这名字很