揭秘MOS管的N沟道与P沟道之间的关系

  1.导通特性

  NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

  PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

  2.MOS开关管损失

  不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。

  MOS在导通和截止的时候,一定不是在瞬间完成的。MOS管两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。

  导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

  3.MOS管驱动

  跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。

  在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

  第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管

  

原文地址:https://www.cnblogs.com/lishenxin/p/10063357.html

时间: 2024-08-14 05:40:58

揭秘MOS管的N沟道与P沟道之间的关系的相关文章

转:C#综合揭秘——细说进程、应用程序域与上下文之间的关系

原文:http://www.cnblogs.com/leslies2/archive/2012/03/06/2379235.html 本文主要是介绍进程(Process).应用程序域(AppDomain)..NET上下文(Context)的概念与操作.虽然在一般的开发当中这三者并不常用,但熟悉三者的关系,深入了解其作用,对提高系统的性能有莫大的帮助.在本篇最后的一节当中将会介绍到三者与线程之间的关系,希望对多线程开发人员能提供一定的帮助. 一.进程的概念与作用 进程(Process)是Windo

[转]C#综合揭秘——细说进程、应用程序域与上下文之间的关系

引言 本文主要是介绍进程(Process).应用程序域(AppDomain)..NET上下文(Context)的概念与操作.虽然在一般的开发当中这三者并不常用,但熟悉三者的关系,深入了解其作用,对提高系统的性能有莫大的帮助.在本篇最后的一节当中将会介绍到三者与线程之间的关系,希望对多线程开发人员能提供一定的帮助.因为时间仓促,文中有错误的地方敬请点评. 目录 一.进程的概念与作用 二.应用程序域 三.深入了解.NET上下文 四.进程应用程序域与线程的关系 一.进程的概念与作用 进程(Proces

N沟道和P沟道MOS FET开关电路

在电路中常见到使用MOS FET场效应管作为开关管使用.下面举例进行说明. 如图1所示,使用了P沟道的内置二极管的电路,此处二极管的主要作用是续流作用,电路是Li电池充放电电路,当外部电源断开时采用Li电池进行内部供电,即+5V电源断开后Q1的G极为低电平,S极和D极导通,为系统供电.图中D2和D3的一方面是降压的作用,使5V降为4V(D2为锗管压降为0.2V,D3硅管压降为0.7V). 图2 工作原理同图1,也使用了内置续流二极管的P沟道COMS FET. 图3使用了内置续流二极管的N沟道的C

揭秘MOS管电路逻辑及MOS管参数

1.开启电压VT 开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压:·标准的N沟道MOS管,VT约为3-6V:·通过工艺上的改进,可以使MOS管的VT值降到2-3V. 2.直流输入电阻RGS 即在栅源极之间加的电压与栅极电流之比,这一特性有时以流过栅极的栅流表示,MOS管的RGS可以很容易地超过1010Ω. 3.漏源击穿电压BVDS 在VGS=0(增强型)的条件下,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS ID剧增的原因有下列两个方面:

揭秘MOS管在电路中发热的四大可能性

无论N型或者P型MOS管,其工作原理本质是一样的.MOS管是由加在输入端栅极的电压来控制输出端漏极的电流.MOS管是压控器件它通过加在栅极上的电压控制器件的特性,不会发生像三极管做开关时的因基极电流引起的电荷存储效应,因此在开关应用中,MOS管的开关速度应该比三极管快. 常用MOS管的漏极开路电路,如图2漏极原封不动地接负载,叫开路漏极,开路漏极电路中不管负载接多高的电压,都能够接通和关断负载电流.是理想的模拟开关器件.这就是MOS管做开关器件的原理.当然MOS管做开关使用的电路形式比较多了.

揭秘MOS管在音响功放中的详细应用

MOS管跟三极管的区别;MOS管是电压控制器件,它只要小量的Qg驱动电流就能动作了.而三极管是电流驱动器件.B极电流越大,IC就越大. MOS管到底好在哪里呢?好就好在它的电流控制能力.同样的15A的管子,三极管要达到15A输出,可能Ib都要达到1.2A了,(放大倍数不是线性的).这给推动级很大的压力.而MOS不会,它还是同样的Qg充电电流就可以应付.而且MOS的过载能力很强,瞬态下Id会达到额定的10倍多而不会烧坏. 如下图是短路测试波形,此时就就是正温系数MOS管的最大电流了(根据Vgs的大

硬件工程师必会电路模块之MOS管应用(转)

**本文你可以获得什么? 实际工程应用中常用的MOS管电路(以笔记本主板经典电路为例): 学到实际系统中用到的开关电路模块以及MOS管非常重要的隔离电路(结合IIC的数据手册和笔记本主板应用电路): MOS管寄生体二极管,极性判断?** 1. MOS管开关电路学习过模拟电路的人都知道三极管是流控流器件,也就是由基极电流控制集电极与发射极之间的电流:而MOS管是压控流器件,也就是由栅极上所加的电压控制漏极与源极之间电流.MOSFET管是FET的一种,可以被制造为增强型或者耗尽型,P沟道或N沟道共四

MOS管(场效应管)导通条件

场效应管的导通与截止由栅源电压来控制,对于增强型场效应管来说,N沟道的管子加正向电压即导通,P沟道的管子则加反向电压.一般2V-4V就可以了.    但是,场效应管分为增强型(常开型)和耗尽型(常闭型),增强型的管子是需要加电压才能导通的,而耗尽型管子本来就处于导通状态,加栅源电压是为了使其截止.    开关只有两种状态通和断,三极管和场效应管工作有三种状态,1.截止,2.线性放大,3.饱和(基极电流继续增加而集电极电流不再增加).使晶体管只工作在1和3状态的电路称之为开关电路,一般以晶体管截止

MOS开关管的选择及原理应用

一般情况下普遍用于高端驱动的MOS,导通时需要是栅极电压大于源极电压.而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V.如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了.很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管. MOS管是电压驱动,按理说只要栅极电压到到开启电压就能导通DS,栅极串多大电阻均能导通.但如果要求开关频率较高时,栅对地或VCC可以看做是一个电容,对于一个电容