[Spark]What's the difference between spark.sql.shuffle.partitions and spark.default.parallelism?

From the answer here,

spark.sql.shuffle.partitions configures the number of partitions that are used when shuffling data for joins or aggregations.

spark.default.parallelism is the default number of partitions in RDDs returned by transformations like join, reduceByKey, and parallelize when not set explicitly by the user. Note that spark.default.parallelism seems to only be working for raw RDD and is ignored when working with dataframes.

If the task you are performing is not a join or aggregation and you are working with dataframes then setting these will not have any effect. You could, however, set the number of partitions yourself by calling df.repartition(numOfPartitions) (don‘t forget to assign it to a new val) in your code.

[Spark]What's the difference between spark.sql.shuffle.partitions and spark.default.parallelism?

原文地址:https://www.cnblogs.com/szss/p/9875914.html

时间: 2024-11-01 22:13:21

[Spark]What's the difference between spark.sql.shuffle.partitions and spark.default.parallelism?的相关文章

Spark修炼之道(进阶篇)——Spark入门到精通:第十三节 Spark Streaming—— Spark SQL、DataFrame与Spark Streaming

主要内容 Spark SQL.DataFrame与Spark Streaming 1. Spark SQL.DataFrame与Spark Streaming 源码直接参照:https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/SqlNetworkWordCount.scala import org.apache.spark.SparkConf

spark关于join后有重复列的问题(org.apache.spark.sql.AnalysisException: Reference '*' is ambiguous)

问题 datafrme提供了强大的JOIN操作,但是在操作的时候,经常发现会碰到重复列的问题.在你不注意的时候,去用相关列做其他操作的时候,就会出现问题! 假如这两个字段同时存在,那么就会报错,如下:org.apache.spark.sql.AnalysisException: Reference 'key2' is ambiguous 实例 1.创建两个df演示实例 val df = sc.parallelize(Array( ("yuwen", "zhangsan&quo

Spark的Python和Scala shell介绍(翻译自Learning.Spark.Lightning-Fast.Big.Data.Analysis)

Spark提供了交互式shell,交互式shell让我们能够点对点(原文:ad hoc)数据分析.如果你已经使用过R,Python,或者Scala中的shell,或者操作系统shell(例如bash),又或者Windows的命令提示符界面,你将会对Spark的shell感到熟悉. 但实际上Spark shell与其它大部分shell都不一样,其它大部分shell让你通过单个机器上的磁盘或者内存操作数据,Spark shell让你可以操作分布在很多机器上的磁盘或者内存里的数据,而Spark负责在集

spark streaming优化:spark.default.parallelism调整处理并行度

官方是这么说的: Cluster resources can be under-utilized if the number of parallel tasks used in any stage of the computation is not high enough. For example, for distributed reduce operations like reduceByKey and reduceByKeyAndWindow, the default number of

Spark 性能相关参数配置详解-shuffle篇

作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 在Spark的官方文档http://spark.apache.org/docs/latest/configuration.html 中提供了这些可配置参数中相当大一部分的说明. 但是文档的更新总是落后于代码的开发的, 还有一些配置参数没有来得及被添加到

Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十二)Spark Streaming接收流数据及使用窗口函数

官网文档:<http://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example> Spark Streaming官网的例子reduceByKeyAndWindow 简单的介绍了spark streaming接收socket流的数据,并把接收到的数据进行windows窗口函数对数据进行批量处理. import java.util.Arrays; import org.apache.spark.S

第2节 Spark集群安装:1 - 3;第3节 Spark HA高可用部署:1 - 2

三. Spark集群安装 3.1 下载spark安装包 下载地址spark官网:http://spark.apache.org/downloads.html 这里我们使用 spark-2.1.3-bin-hadoop2.7版本. 3.2 规划安装目录 /export/servers 3.3 解压安装包 tar -zxvf spark-2.1.3-bin-hadoop2.7.tgz 3.4 重命名目录 mv spark-2.1.3-bin-hadoop2.7 spark 3.5 修改配置文件 配置

spark版本定制五:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容: 1.在线动态计算分类最热门商品案例回顾与演示 2.基于案例贯通Spark Streaming的运行源码 一.在线动态计算分类最热门商品案例回顾与演示 案例回顾: package com.dt.spark.sparkstreaming import com.robinspark.utils.ConnectionPool import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.

spark 插入数据到mysql时遇到的问题 org.apache.spark.SparkException: Task not serializable

报错问题:Exception in thread "main" org.apache.spark.SparkException: Task not serializableCaused by: java.io.NotSerializableException: org.apache.commons.dbcp2.PoolingDataSource$PoolGuardConnectionWrapper 出错的代码: def saveMonthToMysql(everymonth_avg:R