基于redis的分布式锁(不适合用于生产环境)

基于redis的分布式锁

1 介绍

这篇博文讲介绍如何一步步构建一个基于Redis的分布式锁。会从最原始的版本开始,然后根据问题进行调整,最后完成一个较为合理的分布式锁。

本篇文章会将分布式锁的实现分为两部分,一个是单机环境,另一个是集群环境下的Redis锁实现。在介绍分布式锁的实现之前,先来了解下分布式锁的一些信息。

2 分布式锁

2.1 什么是分布式锁?

分布式锁是控制分布式系统或不同系统之间共同访问共享资源的一种锁实现,如果不同的系统或同一个系统的不同主机之间共享了某个资源时,往往需要互斥来防止彼此干扰来保证一致性。

2.2 分布式锁需要具备哪些条件

  1. 互斥性:在任意一个时刻,只有一个客户端持有锁。
  2. 无死锁:即便持有锁的客户端崩溃或者其他意外事件,锁仍然可以被获取。
  3. 容错:只要大部分Redis节点都活着,客户端就可以获取和释放锁

2.4 分布式锁的实现有哪些?

  1. 数据库
  2. Memcached(add命令)
  3. Redis(setnx命令)
  4. Zookeeper(临时节点)
  5. 等等

3 单机Redis的分布式锁

3.1 准备工作

3.1.1 定义常量类

public class LockConstants {
    public static final String OK = "OK";

    /** NX|XX, NX -- Only set the key if it does not already exist. XX -- Only set the key if it already exist. **/
    public static final String NOT_EXIST = "NX";
    public static final String EXIST = "XX";

    /** expx EX|PX, expire time units: EX = seconds; PX = milliseconds **/
    public static final String SECONDS = "EX";
    public static final String MILLISECONDS = "PX";

    private LockConstants() {}
}
复制代码

3.1.2 定义锁的抽象类

抽象类RedisLock实现java.util.concurrent包下的Lock接口,然后对一些方法提供默认实现,子类只需实现lock方法和unlock方法即可。代码如下

public abstract class RedisLock implements Lock {

    protected Jedis jedis;
    protected String lockKey;

    public RedisLock(Jedis jedis,String lockKey) {
        this(jedis, lockKey);
    }

    public void sleepBySencond(int sencond){
        try {
            Thread.sleep(sencond*1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void lockInterruptibly(){}

    @Override
    public Condition newCondition() {
        return null;
    }

    @Override
    public boolean tryLock() {
        return false;
    }

    @Override
    public boolean tryLock(long time, TimeUnit unit){
        return false;
    }

}
复制代码

3.2 最基础的版本1

先来一个最基础的版本,代码如下

public class LockCase1 extends RedisLock {

    public LockCase1(Jedis jedis, String name) {
        super(jedis, name);
    }

    @Override
    public void lock() {
        while(true){
            String result = jedis.set(lockKey, "value", NOT_EXIST);
            if(OK.equals(result)){
                System.out.println(Thread.currentThread().getId()+"加锁成功!");
                break;
            }
        }
    }

    @Override
    public void unlock() {
        jedis.del(lockKey);
    }
}
复制代码

LockCase1类提供了lock和unlock方法。
其中lock方法也就是在reids客户端执行如下命令

SET lockKey value NX
复制代码

而unlock方法就是调用DEL命令将键删除。
好了,方法介绍完了。现在来想想这其中会有什么问题?
假设有两个客户端A和B,A获取到分布式的锁。A执行了一会,突然A所在的服务器断电了(或者其他什么的),也就是客户端A挂了。这时出现一个问题,这个锁一直存在,且不会被释放,其他客户端永远获取不到锁。如下示意图

可以通过设置过期时间来解决这个问题

3.3 版本2-设置锁的过期时间

public void lock() {
    while(true){
        String result = jedis.set(lockKey, "value", NOT_EXIST,SECONDS,30);
        if(OK.equals(result)){
            System.out.println(Thread.currentThread().getId()+"加锁成功!");
            break;
        }
    }
}
复制代码

类似的Redis命令如下

SET lockKey value NX EX 30
复制代码

注:要保证设置过期时间和设置锁具有原子性

这时又出现一个问题,问题出现的步骤如下

  1. 客户端A获取锁成功,过期时间30秒。
  2. 客户端A在某个操作上阻塞了50秒。
  3. 30秒时间到了,锁自动释放了。
  4. 客户端B获取到了对应同一个资源的锁。
  5. 客户端A从阻塞中恢复过来,释放掉了客户端B持有的锁。

示意图如下

这时会有两个问题

  1. 过期时间如何保证大于业务执行时间?
  2. 如何保证锁不会被误删除?

先来解决如何保证锁不会被误删除这个问题。
这个问题可以通过设置value为当前客户端生成的一个随机字符串,且保证在足够长的一段时间内在所有客户端的所有获取锁的请求中都是唯一的。

3.4 版本3-设置锁的value

抽象类RedisLock增加lockValue字段,lockValue字段的默认值为UUID随机值假设当前线程ID。

public abstract class RedisLock implements Lock {

    //...
    protected String lockValue;

    public RedisLock(Jedis jedis,String lockKey) {
        this(jedis, lockKey, UUID.randomUUID().toString()+Thread.currentThread().getId());
    }

    public RedisLock(Jedis jedis, String lockKey, String lockValue) {
        this.jedis = jedis;
        this.lockKey = lockKey;
        this.lockValue = lockValue;
    }

    //...
}
复制代码

加锁代码

public void lock() {
    while(true){
        String result = jedis.set(lockKey, lockValue, NOT_EXIST,SECONDS,30);
        if(OK.equals(result)){
            System.out.println(Thread.currentThread().getId()+"加锁成功!");
            break;
        }
    }
}
复制代码

解锁代码

public void unlock() {
    String lockValue = jedis.get(lockKey);
    if (lockValue.equals(lockValue)){
        jedis.del(lockKey);
    }
}
复制代码

这时看看加锁代码,好像没有什么问题啊。
再来看看解锁的代码,这里的解锁操作包含三步操作:获取值、判断和删除锁。这时你有没有想到在多线程环境下的i++操作?

3.4.1 i++问题

i++操作也可分为三个步骤:读i的值,进行i+1,设置i的值。
如果两个线程同时对i进行i++操作,会出现如下情况

  1. i设置值为0
  2. 线程A读到i的值为0
  3. 线程B也读到i的值为0
  4. 线程A执行了+1操作,将结果值1写入到内存
  5. 线程B执行了+1操作,将结果值1写入到内存
  6. 此时i进行了两次i++操作,但是结果却为1

在多线程环境下有什么方式可以避免这类情况发生?
解决方式有很多种,例如用AtomicInteger、CAS、synchronized等等。
这些解决方式的目的都是要确保i++ 操作的原子性。那么回过头来看看解锁,同理我们也是要确保解锁的原子性。我们可以利用Redis的lua脚本来实现解锁操作的原子性。

3.5 版本4-具有原子性的释放锁

lua脚本内容如下

if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end
复制代码

这段Lua脚本在执行的时候要把的lockValue作为ARGV[1]的值传进去,把lockKey作为KEYS[1]的值传进去。现在来看看解锁的java代码

public void unlock() {
    // 使用lua脚本进行原子删除操作
    String checkAndDelScript = "if redis.call(‘get‘, KEYS[1]) == ARGV[1] then " +
                                "return redis.call(‘del‘, KEYS[1]) " +
                                "else " +
                                "return 0 " +
                                "end";
    jedis.eval(checkAndDelScript, 1, lockKey, lockValue);
}
复制代码

好了,解锁操作也确保了原子性了,那么是不是单机Redis环境的分布式锁到此就完成了?
别忘了版本2-设置锁的过期时间还有一个,过期时间如何保证大于业务执行时间问题没有解决。

3.6 版本5-确保过期时间大于业务执行时间

抽象类RedisLock增加一个boolean类型的属性isOpenExpirationRenewal,用来标识是否开启定时刷新过期时间。
在增加一个scheduleExpirationRenewal方法用于开启刷新过期时间的线程。

public abstract class RedisLock implements Lock {
	//...

    protected volatile boolean isOpenExpirationRenewal = true;

    /**
     * 开启定时刷新
     */
    protected void scheduleExpirationRenewal(){
        Thread renewalThread = new Thread(new ExpirationRenewal());
        renewalThread.start();
    }

    /**
     * 刷新key的过期时间
     */
    private class ExpirationRenewal implements Runnable{
        @Override
        public void run() {
            while (isOpenExpirationRenewal){
                System.out.println("执行延迟失效时间中...");

                String checkAndExpireScript = "if redis.call(‘get‘, KEYS[1]) == ARGV[1] then " +
                        "return redis.call(‘expire‘,KEYS[1],ARGV[2]) " +
                        "else " +
                        "return 0 end";
                jedis.eval(checkAndExpireScript, 1, lockKey, lockValue, "30");

                //休眠10秒
                sleepBySencond(10);
            }
        }
    }
}
复制代码

加锁代码在获取锁成功后将isOpenExpirationRenewal置为true,并且调用scheduleExpirationRenewal方法,开启刷新过期时间的线程。

public void lock() {
    while (true) {
        String result = jedis.set(lockKey, lockValue, NOT_EXIST, SECONDS, 30);
        if (OK.equals(result)) {
            System.out.println("线程id:"+Thread.currentThread().getId() + "加锁成功!时间:"+LocalTime.now());

            //开启定时刷新过期时间
            isOpenExpirationRenewal = true;
            scheduleExpirationRenewal();
            break;
        }
        System.out.println("线程id:"+Thread.currentThread().getId() + "获取锁失败,休眠10秒!时间:"+LocalTime.now());
        //休眠10秒
        sleepBySencond(10);
    }
}
复制代码

解锁代码增加一行代码,将isOpenExpirationRenewal属性置为false,停止刷新过期时间的线程轮询。

public void unlock() {
    //...
    isOpenExpirationRenewal = false;
}

3.7 测试

测试代码如下

public void testLockCase5() {
    //定义线程池
    ThreadPoolExecutor pool = new ThreadPoolExecutor(0, 10,
                                                    1, TimeUnit.SECONDS,
                                                    new SynchronousQueue<>());

    //添加10个线程获取锁
    for (int i = 0; i < 10; i++) {
        pool.submit(() -> {
            try {
                Jedis jedis = new Jedis("localhost");
                LockCase5 lock = new LockCase5(jedis, lockName);
                lock.lock();

                //模拟业务执行15秒
                lock.sleepBySencond(15);

                lock.unlock();
            } catch (Exception e){
                e.printStackTrace();
            }
        });
    }

    //当线程池中的线程数为0时,退出
    while (pool.getPoolSize() != 0) {}
}
复制代码

测试结果

或许到这里基于单机Redis环境的分布式就介绍完了。但是使用java的同学有没有发现一个锁的重要特性

那就是锁的重入,那么分布式锁的重入该如何实现呢?

可重入锁: 也叫做递归锁,指的是在同一线程内,外层函数获得锁之后,内层递归函数仍然可以获取到该锁。换一种说法:同一个线程再次进入同步代码时,可以使用自己已获取到的锁。

作用:防止在同一线程中多次获取锁而导致死锁发生。

常见的可重入锁

  • Synchronized关键字:

public class SynchronizedDemo {
     class Widget{
        public synchronized void doSomething(){
            System.out.println("Widget calling doSomething...");
        }
    }

     class LoggingWidget extends Widget{
        @Override
        public synchronized void doSomething() {
            System.out.println("LoggingWidget calling doSomething");
            super.doSomething();
        }
    }

    public static void main(String[] args){
         SynchronizedDemo synchronizedDemo = new SynchronizedDemo();
        SynchronizedDemo.Widget widget = synchronizedDemo.new LoggingWidget();
        widget.doSomething();
    }
}

输出结果:
LoggingWidget calling doSomething
Widget calling doSomething...

根据结果,我们可以看到Synchronized关键字是可重入锁。

4 集群Redis的分布式锁

在Redis的分布式环境中,Redis 的作者提供了RedLock 的算法来实现一个分布式锁。

4.1 加锁

RedLock算法加锁步骤如下

  1. 获取当前Unix时间,以毫秒为单位。
  2. 依次尝试从N个实例,使用相同的key和随机值获取锁。在步骤2,当向Redis设置锁时,客户端应该设置一个网络连接和响应超时时间,这个超时时间应该小于锁的失效时间。例如你的锁自动失效时间为10秒,则超时时间应该在5-50毫秒之间。这样可以避免服务器端Redis已经挂掉的情况下,客户端还在死死地等待响应结果。如果服务器端没有在规定时间内响应,客户端应该尽快尝试另外一个Redis实例。
  3. 客户端使用当前时间减去开始获取锁时间(步骤1记录的时间)就得到获取锁使用的时间。当且仅当从大多数(这里是3个节点)的Redis节点都取到锁,并且使用的时间小于锁失效时间时,锁才算获取成功。
  4. 如果取到了锁,key的真正有效时间等于有效时间减去获取锁所使用的时间(步骤3计算的结果)。
  5. 如果因为某些原因,获取锁失败(没有在至少N/2+1个Redis实例取到锁或者取锁时间已经超过了有效时间),客户端应该在所有的Redis实例上进行解锁(即便某些Redis实例根本就没有加锁成功)。

4.2 解锁

向所有的Redis实例发送释放锁命令即可,不用关心之前有没有从Redis实例成功获取到锁.

5 总结

这篇文章讲述了一个基于Redis的分布式锁的编写过程及解决问题的思路,但是本篇文章实现的分布式锁并不适合用于生产环境。java环境有 Redisson 可用于生产环境,但是分布式锁还是Zookeeper会比较好一些(可以看Martin Kleppmann 和 RedLock的分析)。

原文地址:https://www.cnblogs.com/Snail-1174158844/p/9924526.html

时间: 2024-10-10 14:59:31

基于redis的分布式锁(不适合用于生产环境)的相关文章

基于Redis的分布式锁和Redlock算法

1 前言 前面写了4篇Redis底层实现和工程架构相关文章,感兴趣的读者可以回顾一下: Redis面试热点之底层实现篇-1 Redis面试热点之底层实现篇-2 Redis面试热点之工程架构篇-1 Redis面试热点之工程架构篇-2 今天开始来和大家一起学习一下Redis实际应用篇,会写几个Redis的常见应用. 在我看来Redis最为典型的应用就是作为分布式缓存系统,其他的一些应用本质上并不是杀手锏功能,是基于Redis支持的数据类型和分布式架构来实现的,属于小而美的应用. 结合笔者的日常工作,

身为一枚优秀的程序员必备的基于Redis的分布式锁和Redlock算法

1 前言 今天开始来和大家一起学习一下Redis实际应用篇,会写几个Redis的常见应用. 在我看来Redis最为典型的应用就是作为分布式缓存系统,其他的一些应用本质上并不是杀手锏功能,是基于Redis支持的数据类型和分布式架构来实现的,属于小而美的应用. 结合笔者的日常工作,今天和大家一起研究下基于Redis的分布式锁和Redlock算法的一些事情. 2.初识锁 1. 锁的双面性 现在我们写的程序基本上都有一定的并发性,要么单台多进线程.要么多台机器集群化,在仅读的场景下是不需要加锁的,因为数

基于Redis的分布式锁到底安全吗(上)?

网上有关Redis分布式锁的文章可谓多如牛毛了,不信的话你可以拿关键词"Redis 分布式锁"随便到哪个搜索引擎上去搜索一下就知道了.这些文章的思路大体相近,给出的实现算法也看似合乎逻辑,但当我们着手去实现它们的时候,却发现如果你越是仔细推敲,疑虑也就越来越多. 实际上,大概在一年以前,关于Redis分布式锁的安全性问题,在分布式系统专家Martin Kleppmann和Redis的作者antirez之间就发生过一场争论.由于对这个问题一直以来比较关注,所以我前些日子仔细阅读了与这场争

基于redis的分布式锁

<?php /** * 基于redis的分布式锁 * * 参考开源代码: * http://nleach.com/post/31299575840/redis-mutex-in-php * * https://gist.github.com/nickyleach/3694555 */ pc_base::load_sys_class('cache_redis', '', 0); class dist_key_redis { //锁的超时时间 const TIMEOUT = 20; const SL

转载:基于Redis实现分布式锁

转载:基于Redis实现分布式锁  ,出处: http://blog.csdn.net/ugg/article/details/41894947 背景在很多互联网产品应用中,有些场景需要加锁处理,比如:秒杀,全局递增ID,楼层生成等等.大部分的解决方案是基于DB实现的,Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系.其次Redis提供一些命令SETNX,GETSET,可以方便实现分布式锁机制. Redis命令介绍使用Redis实现分

基于redis的分布式锁实现

关于分布式锁 很久之前有讲过并发编程中的锁并发编程的锁机制:synchronized和lock.在单进程的系统中,当存在多个线程可以同时改变某个变量时,就需要对变量或代码块做同步,使其在修改这种变量时能够线性执行消除并发修改变量.而同步的本质是通过锁来实现的.为了实现多个线程在一个时刻同一个代码块只能有一个线程可执行,那么需要在某个地方做个标记,这个标记必须每个线程都能看到,当标记不存在时可以设置该标记,其余后续线程发现已经有标记了则等待拥有标记的线程结束同步代码块取消标记后再去尝试设置标记.

[Redis] 基于redis的分布式锁

前言分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁. 可靠性首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 互斥性.在任意时刻,只有一个客户端能持有锁.不会发生死锁.即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁.具有容错性.只要大部分的Redis节点正常运行,客户端就可以加锁和解锁.解铃还须系铃人.加锁和解锁必须

python基于redis实现分布式锁

阅读目录 什么事分布式锁 基于redis实现分布式锁 一.什么是分布式锁 我们在开发应用的时候,如果需要对某一个共享变量进行多线程同步访问的时候,可以使用我们学到的锁进行处理,并且可以完美的运行,毫无Bug! 注意这是单机应用,后来业务发展,需要做集群,一个应用需要部署到几台机器上然后做负载均衡,大致如下图: 上图可以看到,变量A存在三个服务器内存中(这个变量A主要体现是在一个类中的一个成员变量,是一个有状态的对象),如果不加任何控制的话,变量A同时都会在分配一块内存,三个请求发过来同时对这个变

基于redis的分布式锁的分析与实践

转:https://my.oschina.net/wnjustdoit/blog/1606215 前言:在分布式环境中,我们经常使用锁来进行并发控制,锁可分为乐观锁和悲观锁,基于数据库版本戳的实现是乐观锁,基于redis或zookeeper的实现可认为是悲观锁了.乐观锁和悲观锁最根本的区别在于线程之间是否相互阻塞. 那么,本文主要来讨论基于redis的分布式锁算法问题. 从2.6.12版本开始,redis为SET命令增加了一系列选项(SET key value [EX seconds] [PX