深度学习系列(2) | Global Average Pooling是否可以替代全连接层?

深度学习系列 | Global Average Pooling是否可以替代全连接层?

Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术。在keras发布的经典模型中,可以看到不少模型甚至抛弃了全连接层,转而使用GAP,而在支持迁移学习方面,各个模型几乎都支持使用Global Average Pooling和Global Max Pooling(GMP)。 然而,GAP是否真的可以取代全连接层?其背后的原理何在呢?本文来一探究竟。

一、什么是GAP?

  先看看原论文的定义:

  In this paper, we propose another strategy called global average pooling to replace the traditional fully connected layers in CNN. The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top of the feature maps, we take the average of each feature map, and the resulting vector is fed directly into the softmax layer. One advantage of global average pooling over the fully connected layers is that it is more native to the convolution structure by enforcing correspondences between feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence maps. Another advantage is that there is no parameter to optimize in the global average pooling thus overfitting is avoided at this layer. Futhermore, global average pooling sums out the spatial information, thus it is more robust to spatial translations of the input.  

  简单来说,就是在卷积层之后,用GAP替代FC全连接层。有两个有点:一是GAP在特征图与最终的分类间转换更加简单自然;二是不像FC层需要大量训练调优的参数,降低了空间参数会使模型更加健壮,抗过拟合效果更佳。

  我们再用更直观的图像来看GAP的工作原理:

  假设卷积层的最后输出是h × w × d 的三维特征图,具体大小为6 × 6 × 3,经过GAP转换后,变成了大小为 1 × 1 × 3 的输出值,也就是每一层 h × w 会被平均化成一个值。

二、 GAP在Keras中的定义

  GAP的使用一般在卷积层之后,输出层之前:

x = layers.MaxPooling2D((2, 2), strides=(2, 2), name=‘block5_pool‘)(x) #卷积层最后一层
x = layers.GlobalAveragePooling2D()(x) #GAP层
prediction = Dense(10, activation=‘softmax‘)(x) #输出层

  再看看GAP的代码具体实现:

@tf_export(‘keras.layers.GlobalAveragePooling2D‘,
           ‘keras.layers.GlobalAvgPool2D‘)
class GlobalAveragePooling2D(GlobalPooling2D):
  """Global average pooling operation for spatial data.
  Arguments:
      data_format: A string,
          one of `channels_last` (default) or `channels_first`.
          The ordering of the dimensions in the inputs.
          `channels_last` corresponds to inputs with shape
          `(batch, height, width, channels)` while `channels_first`
          corresponds to inputs with shape
          `(batch, channels, height, width)`.
          It defaults to the `image_data_format` value found in your
          Keras config file at `~/.keras/keras.json`.
          If you never set it, then it will be "channels_last".
  Input shape:
      - If `data_format=‘channels_last‘`:
          4D tensor with shape:
          `(batch_size, rows, cols, channels)`
      - If `data_format=‘channels_first‘`:
          4D tensor with shape:
          `(batch_size, channels, rows, cols)`
  Output shape:
      2D tensor with shape:
      `(batch_size, channels)`
  """

  def call(self, inputs):
    if self.data_format == ‘channels_last‘:
      return backend.mean(inputs, axis=[1, 2])
    else:
      return backend.mean(inputs, axis=[2, 3])

  实现很简单,对宽度和高度两个维度的特征数据进行平均化求值。如果是NHWC结构(数量、宽度、高度、通道数),则axis=[1, 2];反之如果是CNHW,则axis=[2, 3]。

三、GAP VS GMP VS FC

  在验证GAP技术可行性前,我们需要准备训练和测试数据集。我在牛津大学网站上找到了17种不同花类的数据集,地址为:http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html 。该数据集每种花有80张图片,共计1360张图片,我对花进行了分类处理,抽取了部分数据作为测试数据,这样最终训练和测试数据的数量比为7:1。

  我将数据集上传到我的百度网盘: https://pan.baidu.com/s/1YDA_VOBlJSQEijcCoGC60w ,大家可以下载使用。

  在Keras经典模型中,若支持迁移学习,不但有GAP,还有GMP,而默认是自己组建FC层,一个典型的实现为:

if include_top:
        # Classification block
        x = layers.Flatten(name=‘flatten‘)(x)
        x = layers.Dense(4096, activation=‘relu‘, name=‘fc1‘)(x)
        x = layers.Dense(4096, activation=‘relu‘, name=‘fc2‘)(x)
        x = layers.Dense(classes, activation=‘softmax‘, name=‘predictions‘)(x)
    else:
        if pooling == ‘avg‘:
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == ‘max‘:
            x = layers.GlobalMaxPooling2D()(x)

  本文将在同一数据集条件下,比较GAP、GMP和FC层的优劣,选取测试模型为VGG19和InceptionV3两种模型的迁移学习版本。

  先看看在VGG19模型下,GAP、GMP和FC层在各自迭代50次后,验证准确度和损失度的比对。代码如下:

import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.applications.vgg19 import VGG19from keras.layers import Dense, Flatten
from matplotlib import pyplot as plt
import numpy as np

# 为保证公平起见,使用相同的随机种子
np.random.seed(7)
batch_size = 32
# 迭代50次
epochs = 50
# 依照模型规定,图片大小被设定为224
IMAGE_SIZE = 224
# 17种花的分类
NUM_CLASSES = 17
TRAIN_PATH = ‘/home/yourname/Documents/tensorflow/images/17flowerclasses/train‘
TEST_PATH = ‘/home/yourname/Documents/tensorflow/images/17flowerclasses/test‘
FLOWER_CLASSES = [‘Bluebell‘, ‘ButterCup‘, ‘ColtsFoot‘, ‘Cowslip‘, ‘Crocus‘, ‘Daffodil‘, ‘Daisy‘,
                  ‘Dandelion‘, ‘Fritillary‘, ‘Iris‘, ‘LilyValley‘, ‘Pansy‘, ‘Snowdrop‘, ‘Sunflower‘,
                  ‘Tigerlily‘, ‘tulip‘, ‘WindFlower‘]

def model(mode=‘fc‘):
    if mode == ‘fc‘:
        # FC层设定为含有512个参数的隐藏层
        base_model = VGG19(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, pooling=‘none‘)
        x = base_model.output
        x = Flatten()(x)
        x = Dense(512, activation=‘relu‘)(x)
        prediction = Dense(NUM_CLASSES, activation=‘softmax‘)(x)
    elif mode == ‘avg‘:
        # GAP层通过指定pooling=‘avg‘来设定
        base_model = VGG19(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, pooling=‘avg‘)
        x = base_model.output
        prediction = Dense(NUM_CLASSES, activation=‘softmax‘)(x)
    else:
        # GMP层通过指定pooling=‘max‘来设定
        base_model = VGG19(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, pooling=‘max‘)
        x = base_model.output
        prediction = Dense(NUM_CLASSES, activation=‘softmax‘)(x)

    model = Model(input=base_model.input, output=prediction)
    model.summary()
    opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
    model.compile(loss=‘categorical_crossentropy‘,
                             optimizer=opt,
                             metrics=[‘accuracy‘])

    # 使用数据增强
    train_datagen = ImageDataGenerator()
    train_generator = train_datagen.flow_from_directory(directory=TRAIN_PATH,
                                                        target_size=(IMAGE_SIZE, IMAGE_SIZE),
                                                        classes=FLOWER_CLASSES)
    test_datagen = ImageDataGenerator()
    test_generator = test_datagen.flow_from_directory(directory=TEST_PATH,
                                                      target_size=(IMAGE_SIZE, IMAGE_SIZE),
                                                      classes=FLOWER_CLASSES)
    # 运行模型
    history = model.fit_generator(train_generator, epochs=epochs, validation_data=test_generator)
    return history

fc_history = model(‘fc‘)
avg_history = model(‘avg‘)
max_history = model(‘max‘)

# 比较多种模型的精确度
plt.plot(fc_history.history[‘val_acc‘])
plt.plot(avg_history.history[‘val_acc‘])
plt.plot(max_history.history[‘val_acc‘])
plt.title(‘Model accuracy‘)
plt.ylabel(‘Validation Accuracy‘)
plt.xlabel(‘Epoch‘)
plt.legend([‘FC‘, ‘AVG‘, ‘MAX‘], loc=‘lower right‘)
plt.grid(True)
plt.show()

# 比较多种模型的损失率
plt.plot(fc_history.history[‘val_loss‘])
plt.plot(avg_history.history[‘val_loss‘])
plt.plot(max_history.history[‘val_loss‘])
plt.title(‘Model loss‘)
plt.ylabel(‘Loss‘)
plt.xlabel(‘Epoch‘)
plt.legend([‘FC‘, ‘AVG‘, ‘MAX‘], loc=‘upper right‘)
plt.grid(True)
plt.show()

  各自运行50次迭代后,我们看看准确度比较:

  再看看损失度比较:

  可以看出,首先GMP在本模型中表现太差,不值一提;而FC在前40次迭代时表现尚可,但到了40次后发生了剧烈变化,出现了过拟合现象(运行20次左右时的模型相对较好,但准确率不足70%,模型还是很差);三者中表现最好的是GAP,无论从准确度还是损失率,表现都较为平稳,抗过拟合化效果明显(但最终的准确度70%,模型还是不行)。

  我们再转向另一个模型InceptionV3,代码稍加改动如下:

import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.layers import Dense, Flatten
from matplotlib import pyplot as plt
import numpy as np

# 为保证公平起见,使用相同的随机种子
np.random.seed(7)
batch_size = 32
# 迭代50次
epochs = 50
# 依照模型规定,图片大小被设定为224
IMAGE_SIZE = 224
# 17种花的分类
NUM_CLASSES = 17
TRAIN_PATH = ‘/home/hutao/Documents/tensorflow/images/17flowerclasses/train‘
TEST_PATH = ‘/home/hutao/Documents/tensorflow/images/17flowerclasses/test‘
FLOWER_CLASSES = [‘Bluebell‘, ‘ButterCup‘, ‘ColtsFoot‘, ‘Cowslip‘, ‘Crocus‘, ‘Daffodil‘, ‘Daisy‘,
                  ‘Dandelion‘, ‘Fritillary‘, ‘Iris‘, ‘LilyValley‘, ‘Pansy‘, ‘Snowdrop‘, ‘Sunflower‘,
                  ‘Tigerlily‘, ‘tulip‘, ‘WindFlower‘]

def model(mode=‘fc‘):
    if mode == ‘fc‘:
        # FC层设定为含有512个参数的隐藏层
        base_model = InceptionV3(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, pooling=‘none‘)
        x = base_model.output
        x = Flatten()(x)
        x = Dense(512, activation=‘relu‘)(x)
        prediction = Dense(NUM_CLASSES, activation=‘softmax‘)(x)
    elif mode == ‘avg‘:
        # GAP层通过指定pooling=‘avg‘来设定
        base_model = InceptionV3(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, pooling=‘avg‘)
        x = base_model.output
        prediction = Dense(NUM_CLASSES, activation=‘softmax‘)(x)
    else:
        # GMP层通过指定pooling=‘max‘来设定
        base_model = InceptionV3(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, pooling=‘max‘)
        x = base_model.output
        prediction = Dense(NUM_CLASSES, activation=‘softmax‘)(x)

    model = Model(input=base_model.input, output=prediction)
    model.summary()
    opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
    model.compile(loss=‘categorical_crossentropy‘,
                             optimizer=opt,
                             metrics=[‘accuracy‘])

    # 使用数据增强
    train_datagen = ImageDataGenerator()
    train_generator = train_datagen.flow_from_directory(directory=TRAIN_PATH,
                                                        target_size=(IMAGE_SIZE, IMAGE_SIZE),
                                                        classes=FLOWER_CLASSES)
    test_datagen = ImageDataGenerator()
    test_generator = test_datagen.flow_from_directory(directory=TEST_PATH,
                                                      target_size=(IMAGE_SIZE, IMAGE_SIZE),
                                                      classes=FLOWER_CLASSES)
    # 运行模型
    history = model.fit_generator(train_generator, epochs=epochs, validation_data=test_generator)
    return history

fc_history = model(‘fc‘)
avg_history = model(‘avg‘)
max_history = model(‘max‘)

# 比较多种模型的精确度
plt.plot(fc_history.history[‘val_acc‘])
plt.plot(avg_history.history[‘val_acc‘])
plt.plot(max_history.history[‘val_acc‘])
plt.title(‘Model accuracy‘)
plt.ylabel(‘Validation Accuracy‘)
plt.xlabel(‘Epoch‘)
plt.legend([‘FC‘, ‘AVG‘, ‘MAX‘], loc=‘lower right‘)
plt.grid(True)
plt.show()

# 比较多种模型的损失率
plt.plot(fc_history.history[‘val_loss‘])
plt.plot(avg_history.history[‘val_loss‘])
plt.plot(max_history.history[‘val_loss‘])
plt.title(‘Model loss‘)
plt.ylabel(‘Loss‘)
plt.xlabel(‘Epoch‘)
plt.legend([‘FC‘, ‘AVG‘, ‘MAX‘], loc=‘upper right‘)
plt.grid(True)
plt.show()

  先看看准确度的比较:

  再看看损失度的比较:

  很明显,在InceptionV3模型下,FC、GAP和GMP都表现很好,但可以看出GAP的表现依旧最好,其准确度普遍在90%以上,而另两种的准确度在80~90%之间。

四、结论

  从本实验看出,在数据集有限的情况下,采用经典模型进行迁移学习时,GMP表现不太稳定,FC层由于训练参数过多,更易导致过拟合现象的发生,而GAP则表现稳定,优于FC层。当然具体情况具体分析,我们拿到数据集后,可以在几种方式中多训练测试,以寻求最优解决方案。

参考资料:https://www.cnblogs.com/hutao722/p/10008581.html

原文地址:https://www.cnblogs.com/SupremeBoy/p/12258439.html

时间: 2025-01-14 14:50:23

深度学习系列(2) | Global Average Pooling是否可以替代全连接层?的相关文章

深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在"深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning"一文中介绍了经典的CNN网络结构模型,这些可以说已经是家喻户晓的网络结构,在那一文结尾,我提到"是时候动一动卷积计算的形式了",原因是很多工作证明了,在基本的CNN卷积计算模式之外,很多简

使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】

转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 GPU 学习深度学习>系列文章的第二篇,主要介绍了 Tensorflow 的原理,以及如何用最简单的Python代码进行功能实现.本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主. 往期内容: 使用腾讯云 GPU 学习深度学习系列之一:传统机器学

【深度学习系列1】 深度学习在腾讯的平台化和应用实践(转载)

转载:原文链接 [深度学习系列1] 深度学习在腾讯的平台化和应用实践 引言:深度学习是近年机器学习领域的重大突破,有着广泛的应用前景.随着Google公开 Google Brain计划,业界对深度学习的热情高涨.腾讯在深度学习领域持续投入,获得了实际落地的产出.我们准备了四篇文章,阐述深度学习的原理和在腾讯的实 践,介绍腾讯深度学习平台Mariana,本文为第一篇. 深度学习(Deep Learning)是近年来机器学习领域的热点,在语音识别.图像识别等领域均取得了突破性进展.腾讯提供广泛的互联

【深度学习系列3】 Mariana CNN并行框架与图像识别

[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框架. 将深度卷积神经网络(Convolutional Neural Networks, 简称CNNs)用于图像识别在研究领域吸引着越来越多目光.由于卷积神经网络结构非常适合模型并行的训练,因此以模型并行+数据并行的方式来加速Deep CNNs训练,可预期取得较大收获.Deep CNNs的单机多GPU

【深度学习系列4】深度学习及并行化实现概述

[深度学习系列4]深度学习及并行化实现概述 摘要: 深度学习可以完成需要高度抽象特征的人工智能任务,如语音识别.图像识别和检索.自然语言理解等.深层模型是包含多个隐藏层的人工神经网络,多层非线性结构使其具备强大的特征表达能力和对复杂任务建模能力.训练深层模型是长期以来的难题,近年来以层次化.逐层初始化为代表的一系列方法的提出给训练深层模型带来了希望,并在多个应用领域获得了成功.深层模型的并行化框架和训练加速方法是深度学习走向实用的重要基石,已有多个针对不同深度模型的开源实现,Google.Fac

【深度学习系列2】Mariana DNN多GPU数据并行框架

[深度学习系列2]Mariana DNN多GPU数据并行框架 本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架. 深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点[1][2],产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是Mariana的一部分,Mariana技术

【深度学习系列】用PaddlePaddle和Tensorflow实现AlexNet

上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN

【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络Vgg

上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得了第2名的成绩(第一名是GoogLeNet,也是同年提出的).在论文<Very Deep Convolutional Networks for Large-Scale Image Recognition>中,作者提出通过缩小卷积核大小来构建更深的网络. Vgg网络结构 VGGnet是Oxford的

【深度学习系列】关于PaddlePaddle的一些避“坑”技巧

最近除了工作以外,业余在参加Paddle的AI比赛,在用Paddle训练的过程中遇到了一些问题,并找到了解决方法,跟大家分享一下: PaddlePaddle的Anaconda的兼容问题 之前我是在服务器上安装的PaddlePaddle的gpu版本,我想把BROAD数据拷贝到服务器上面,结果发现我们服务器的22端口没开,不能用scp传上去,非常郁闷,只能在本地训练.本机mac的显卡是A卡,所以只能装cpu版本的,安装完以后,我发现运行一下程序的时候报错了: 1 import paddle.v2 a