数据结构与算法 Python语言实现 第四章练习

巩固

  1 # R-4.1
  2 def find_max(data):
  3     n = len(data)
  4     if n == 1:
  5         return data[0]
  6     elif data[0] > data[1]:
  7         data.pop(1)
  8     elif data[0] < data[1]:
  9         data.pop(0)
 10     return find_max(data)
 11
 12
 13 # print(find_max([1, 2, 3, 4, 6, 5]))
 14 # 时间:O(n)  空间:O(n)
 15
 16
 17 # R-4.2
 18 def power(x, n):
 19     if n == 0:
 20         return 1
 21     else:
 22         return x * power(x, n-1)
 23
 24
 25 # print(power(2, 5))
 26
 27
 28 # R-4.3
 29 def power(x, n):
 30     if n == 0:
 31         return 1
 32     else:
 33         partial = power(x, n // 2)
 34         result = partial * partial
 35         if n % 2 == 1:
 36             result *= x
 37         return result
 38
 39
 40 # print(power(2, 18))
 41
 42
 43 # R-4.4
 44 def reverse(S, start, stop):
 45     if start < stop - 1:
 46         S[start], S[stop-1] = S[stop-1], S[start]
 47         reverse(S, start+1, stop-1)
 48
 49
 50 S = [4, 3, 6, 2, 6]
 51 reverse(S, 0, 5)
 52 # print(S)
 53
 54
 55 # R-4.5
 56 # def puzzle_solve(k, S, U):
 57 #     for i in sorted(U):
 58 #         S.append(i)
 59 #         U.remove(i)
 60 #         if k == 1:
 61 #             print(S)
 62 #         else:
 63 #             puzzle_solve(k-1, S, U)
 64 #         S.remove(i)
 65 #         U.append(i)
 66 #
 67 #
 68 # puzzle_solve(3, [], [‘a‘, ‘b‘, ‘c‘, ‘d‘])
 69
 70
 71 # --------------R4-5------------------------
 72 # Note that S is our attempt at solving the sequence and U is our set of all possible numbers that are unused
 73 def solves(S):
 74     # Note, this is a random solution to the pseudoproblem
 75     return S == [‘d‘, ‘b‘, ‘c‘]
 76
 77
 78 def PuzzleSolver(k, S, U):
 79     for e in sorted(U).copy():
 80         S.append(e)
 81         U.remove(e)
 82         if k == 1:
 83             print(S)
 84             if solves(S):
 85                 print( f‘Solution found: {S}‘)
 86         else:
 87             PuzzleSolver(k-1, S, U)
 88         U.add(S.pop())  #removes the last item of an array
 89
 90 # PuzzleSolver(3, [], {‘a‘,‘b‘,‘c‘,‘d‘})
 91
 92
 93 # R-4.6
 94 def sum_harmonic(n):
 95     if n == 1:
 96         return 1
 97     else:
 98         return sum_harmonic(n-1) + 1/n
 99
100 # print(sum_harmonic(4))
101
102
103 # R-4.7
104 def transform_to_num(S):
105     num_list = [‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘]
106     # s = list(S)
107     # for i in s:
108     #     if i not in num_list:
109     #         s.remove(i)
110     # return int(‘‘.join(s))
111
112
113 # ----------R4-7---------------------
114 """
115 Note, we can solve this by knowing that a number can be decomposed into:
116 a*1e0 + a2*1e1 + a3*1e2, etc...
117
118 So 123 is
119 1*1 + 2*10 + 3*100
120
121 """
122
123
124 def str_2_int(string, index=0):
125     length = len(string)
126     if index == length - 1:
127         return int(string[index])
128     else:
129         return int(string[index]) * 10 ** (length - index - 1) + str_2_int(string, index + 1)
130
131
132 """
133 This runs in 0(n) time and space
134
135 """
136
137 # ans = str_2_int(‘12342543‘)
138 # print(ans, type(ans))
139
140
141 # R-4.8
142 import math
143
144
145 def isabel_method(data):
146     n = len(data)
147     try:
148         assert math.log(n, 2) % 1 == 0
149     except AssertionError:
150         return ‘数据需要为2的幂‘
151     if n == 1:
152         return data[0]
153     else:
154         B = [None] * (n // 2)
155         for i in range(len(B)):
156             B[i] = data[2*i] + data[2*i + 1]
157         return isabel_method(B)
158
159
160 # print(isabel_method([1, 2, 3, 4, 5, 6, 7, 8]))
161
162
163 # ---------------R4-8---------------------
164 import math
165
166
167 # def isabel_method(A):
168     # assert math.log(len(A), 2) % 1 == 0, ‘Your array must be a length that is a power of 2‘
169     # if len(A) == 1:
170     #     return A[0]
171     # else:
172     #     B = [None] * (len(A) // 2)
173     #     for i in range(len(B)):
174     #         B[i] = A[2 * i] + A[2 * i - 1]
175     #     return isabel_method(B)
176
177
178 """
179 The recursion will be called log(n) times, since the array is divided in half each time
180
181
182 Each call will require you to access all of the remaining elements, which means it will be
183 n + n/2 + n/4 + ...
184
185 This is equal to n* Sum(1/2**i), which is <2n
186
187 Therefore, the running time is O(n), although a much slower implementation than just adding them up element by element
188
189 """
190
191 # print(isabel_method([1, 2, 3, 4, 5, 6, 7, 8]))
192 # try:
193 #     print(isabel_method([1, 2, 3, 4, 5, 6, 7]))
194 # except Exception as e:
195 #     print(e)

巩固部分代码参考

创新

  1 # C-4.9
  2 import os
  3
  4
  5 def find_max_min_num(S, index=0):
  6     if index == len(S) - 1:
  7         return S[index], S[index]
  8     else:
  9         max_value, min_value = find_max_min_num(S, index+1)
 10         return max(S[index], max_value), min(S[index], min_value)
 11
 12 #
 13 # test_S = [1, 2, 3, 5, 4, 7, 3]
 14 # max_val = find_max_min_num(test_S)
 15 # print(max_val)
 16
 17
 18 # C-4.10
 19 def find_log_int(num):
 20     if num // 2 < 1:
 21         return 0
 22     if num // 2 >= 1:
 23         return 1 + find_log_int(num // 2)
 24
 25
 26 # print(find_log_int(7))
 27
 28
 29 # C-4.11
 30 def confirm_unique(data):
 31     if len(data) == 1:
 32         return True
 33     else:
 34         if data[0] in data[1:]:
 35             return False
 36         else:
 37             return confirm_unique(data[1:])
 38
 39
 40 # print(confirm_unique([1, 2, 3, 4, 5, 6, 3]))
 41
 42
 43 # C-4.12
 44 def calculate_multiplication(m, n):
 45     if m == 1:
 46         return n
 47     else:
 48         return n + calculate_multiplication(m-1, n)
 49
 50
 51 # print(calculate_multiplication(3, 5))
 52
 53
 54 # C-4.14
 55 def han_nuo_ta(n):
 56     if n == 1:
 57         return 1
 58     else:
 59         return han_nuo_ta(n-1) + 1 + han_nuo_ta(n-1)
 60
 61
 62 # print(han_nuo_ta(5))
 63
 64
 65 # ---------C4-14-----------------------
 66 import time
 67 from IPython.display import clear_output
 68
 69
 70 class TowerOfHanoi():
 71     def __init__(self, n=4):
 72         self._n = n
 73         self._array = [[], [], list(reversed(range(n)))]
 74         self._lengths = [0, 0, n]
 75
 76     def draw_towers(self):
 77         rows = []
 78         rows.append([‘\t  1\t‘, ‘\t  2\t‘, ‘\t  3\t‘])
 79         rows.append([‘\t_____\t‘, ‘\t_____\t‘, ‘\t_____\t‘])
 80         for i in range(max(self._lengths)):
 81             row = []
 82             for j in range(3):
 83                 if i < self._lengths[j]:
 84                     row.append(‘\t  ‘ + str(self._array[j][i]) + ‘\t‘)
 85                 else:
 86                     row.append(‘\t  \t‘)
 87             rows.append(row)
 88
 89         for r in reversed(rows):
 90             print(‘‘.join(r))
 91
 92     def __getitem__(self, index):
 93         return self._array[index]
 94
 95     def pop(self, index):
 96         self._lengths[index] -= 1
 97         return self[index].pop()
 98
 99     def getlen(self):
100         return self._lengths
101
102     def __setitem__(self, index, value):
103         if self[index] and self[index][-1] < value:
104             raise ValueError(f‘Illegal move.  Cannot place block with size {value} on block {self[index][-1]}‘)
105         else:
106             self[index].append(value)
107             self._lengths[index] += 1
108
109     def _move_stack(self, n_disks, start_peg, help_peg, target_peg):
110         time.sleep(0.5)
111         clear_output()
112         self.draw_towers()
113
114         if n_disks == 1:
115             self._count += 1
116             value = self.pop(start_peg)
117             try:
118                 self[target_peg] = value
119             except Exception as e:
120                 print(e)
121                 self[start_peg]
122
123         else:
124             # Move the upper stack to the helper peg
125             self._move_stack(n_disks - 1, start_peg, target_peg, help_peg)
126             # Move the lowest item to the target peg
127             self._move_stack(1, start_peg, help_peg, target_peg)
128             # Move the upper stack to the target peg
129             self._move_stack(n_disks - 1, help_peg, start_peg, target_peg)
130
131     def solve_hanoi(self):
132         self._count = 0
133         self._move_stack(self.getlen()[2], 2, 1, 0)
134
135         time.sleep(0.5)
136         clear_output()
137         self.draw_towers()
138
139         print(f‘\nThis took a total of {self._count} moves!‘)
140
141
142 # t = TowerOfHanoi(5)
143 # t.solve_hanoi()
144
145 # ---------------C4-15-----------------------------
146 """
147 Here, we want combinations, not permutations
148
149
150 We rely on the addition of an empty set value ‘UNK‘
151
152 For each stage of the recursion, we add one more value from the sequence
153 and for each current item either add another UNK or that value
154
155 The final layer of that tree will contain exactly one copy of each unique set
156
157 """
158 UNK = chr(1000)
159
160
161 def sub_rec(U, S):
162     """
163     U is the current set
164     S is the remaining sequence
165     """
166     if len(S) == 0:
167         print(‘{‘, str([x for x in U if x != UNK])[1:-1], ‘}‘)
168
169     else:
170         val = S.pop()
171         U.append(UNK)
172         sub_rec(U, S)
173         U.pop()
174
175         U.append(val)
176         sub_rec(U, S)
177         U.pop()
178         S.append(val)
179
180
181 def print_subsets(U):
182     sub_rec([], list(U))
183
184
185 # print_subsets({1, 2, 3, 4, 5})
186
187
188 # C-4.16
189 def reverse_str(word, index=0):
190     if index == len(word) - 1:
191         return [word[index]]
192     else:
193         ans = reverse_str(word, index+1)
194         ans.append(word[index])
195         if index == 0:
196             ans = ‘‘.join(ans)
197         return ans
198
199
200 # print(reverse_str(‘abc‘))
201
202
203 # C-4.17
204 def confirm_hui_str(word):
205     if len(word) == 1:
206         return True
207     else:
208         if word[0] != word[len(word)-1]:
209             return False
210         return confirm_hui_str(word[1:-1])
211
212
213 # print(confirm_hui_str(‘abacaba‘))
214
215
216 # C-4.18
217 def confirm_vowel(word):
218     vowel_list = [‘a‘, ‘e‘, ‘i‘, ‘o‘, ‘u‘]
219     if len(word) == 1:
220         if word[0] in vowel_list:
221             return 1
222         else:
223             return -1
224     elif word[0] in vowel_list:
225         return 1 + confirm_vowel(word[1:])
226     else:
227         return -1 + confirm_vowel(word[1:])
228
229
230 # print(confirm_vowel(‘abcdeae‘))
231
232
233 # C-4.19(没有独立完成哈哈)
234 # def realign_num(data):
235 #     if len(data) == 1:
236 #         return data
237 #     elif data[0] % 2 == 1:
238 #         data.append(data.pop(0))
239 #         return data[:1] + realign_num(data[:-1])
240 #     else:
241 #         return data[:1] + realign_num(data[:-1])
242 #
243
244 # print(realign_num([1, 2, 3, 4]))
245
246
247 # --------------C4-18-----------------
248 """
249 Approaches:
250 1) Two lists that you join at the end
251 2) Add new even numbers to the front and odd ones to the back
252
253
254 """
255
256
257 def evenoddbylists(S, index=0):
258     if index == len(S) - 1:
259         if len(S) == 1:
260             return S
261         elif S[index] % 2 == 0:
262             return [S[index]], []
263         else:
264             return [], [S[index]]
265     else:
266         evens, odds = evenoddbylists(S, index + 1)
267         if S[index] % 2 == 0:
268             evens.append(S[index])
269         else:
270             odds.append(S[index])
271         if index == 0:
272             return evens + odds
273         else:
274             return evens, odds
275
276
277 def evenoddbyappending(S, index=0):
278     if index == len(S) - 1:
279         return [S[index]]
280
281     else:
282         if S[index] % 2 == 1:  # If odd, we want to add it to the end of the list
283             return evenoddbyappending(S, index + 1) + [S[index]]
284         else:
285             return [S[index]] + evenoddbyappending(S, index + 1)
286
287
288 # sequences = [[1, 2, 3, 4, 5, 6, 7, 8], [4, 3, 65, 23, 5, 46, 765, 3, 45, 23], [1], [2, 2]]
289 # print(‘Two lists approach‘)
290 # for s in sequences:
291 #     print(evenoddbylists(s))
292 #
293 # print(‘\n\nAdding each element approach‘)
294 # for s in sequences:
295 #     print(evenoddbyappending(s))
296
297 """
298 Final notes: the second approach is not desirable with lists because it is O(n) due to the fact that
299 appending an entire list of length m to another requires O(m) time.  This could be solved with Linked Lists when
300 we get to that part of the book
301
302
303 Note also that both answers are correct, but the numbers are in a different order
304 """
305
306
307 # C-4.20
308 # def sort_by_k(S, k, index=0):
309 #     if index == len(S) - 1:
310 #         return [S[index]]
311 #     else:
312 #         if S[index] <= k:
313 #             return [S[index]] + sort_by_k(S, k, index+1)
314 #         else:
315 #             return sort_by_k(S, k, index+1) + [S[index]]
316
317
318 # test_s = [1, 6, 5, 2, 3, 5, 7, 9, 11]
319 # print(sort_by_k(test_s, 5.5))
320
321 def add_lists(a, b):
322     if a and b:
323         return a + b
324     else:
325         return b or a
326
327
328 def split_by_k(S, k, index=0):
329     if len(S) == 1:
330         return S
331     elif index == len(S) - 1:
332         if S[index] < k:
333             return [S[index]], [], []
334         elif S[index] > k:
335             return [], [], [S[index]]
336         else:
337             return [], [S[index]], []
338     else:
339         low, mid, high = split_by_k(S, k, index+1)
340         if S[index] < k:
341             low = add_lists(low, [S[index]])
342         elif S[index] > k:
343             high = add_lists(high, [S[index]])
344         else:
345             mid = add_lists(mid, [S[index]])
346         if index == 0:
347             return low + mid + high
348         else:
349             return low, mid, high
350
351
352 S_test = [1, 2, 3, 5, 6, 7, 8, 10, 12]
353 # print(split_by_k(S_test, 6))
354
355
356 # C-4.21
357 def find_sum(S, k, index1=0, index2=1):
358     if S[index1] + S[index2] == k:
359         return S[index1], S[index2]
360     elif index2 == len(S) - 1:
361         index1 += 1
362         index2 = index1 + 1
363         return find_sum(S, k, index1, index2)
364     else:
365         return find_sum(S, k, index1, index2+1)
366
367
368 # S_test = [1, 2, 3, 5, 6, 7, 8, 10, 12]
369 # print(find_sum(S_test, 22))
370
371
372 # ----------------C4-21----------------------
373 """
374 Note: there is a brute force approach, but we will use the one with dictionaries instead
375
376
377 Additional Note: I learned an important thing about using mutable objects as defaults in python
378 Successive calls used the growing key_set, rather than initializing it as set() every time.
379
380 """
381
382
383 # The following line is the wrong way to do the initialization...
384 # def find_pair(S, target, key_set = set(), index=0):
385
386 def find_pair(S, k, key_set=None, index=0):
387     if key_set is None:
388         key_set = set()
389     key = k - S[index]
390     if len(S) <= 1:
391         return None
392     elif index == len(S) - 1:
393         if key in key_set:
394             return key, S[index]
395         else:
396             return None
397     else:
398         if key in key_set:
399             return key, S[index]
400         else:
401             key_set.add(S[index])
402             return find_pair(S, k, key_set, index+1)
403
404
405 sequence = [1, 2, 3, 4, 5, 6, 7, 8]
406
407 # for i in range(20):
408 #     print(f‘For the value {i}, the resulting pair is {find_pair(sequence, i)}‘)
409
410
411 # C-4.22
412 def power_loop(x, n):
413     factor = n
414     partial = 1
415
416     counter = 0
417     while factor:
418         factor = factor >> 1
419         counter += 1
420
421     while counter + 1:
422         partial *= partial
423         if n >> counter & 1:
424             partial *= x
425         counter -= 1
426     return partial
427
428
429 # combos = [(2, 13), (2, 15), (3, 15), (10, 7), (2, 5)]
430 # for b, p in combos:
431 #     print(‘\n‘, power_loop(b, p), b ** p)

创新部分代码参考

项目

  1 # P-4.23
  2 import os
  3
  4
  5 def find(path, filename):
  6     abspath = os.path.join(path, filename)
  7     if os.path.isdir(abspath):
  8         for sub_filename in os.listdir(abspath):
  9             if os.path.isdir(os.path.join(abspath, sub_filename)):
 10                 find(abspath, sub_filename)
 11             else:
 12                 print(os.path.join(abspath, sub_filename))
 13
 14
 15 # find("F:", "工作总结")
 16
 17
 18 # P-4.24
 19
 20
 21 # ------------P4-24------------------
 22 """The ones we want to ultimately solve are:
 23 pot + pan = bib
 24 dog + cat = pig
 25 boy+ girl = baby
 26 """
 27
 28
 29 class SummationSolver:
 30     def __init__(self, a, b, c):
 31         self._a = a
 32         self._b = b
 33         self._c = c
 34         self._max_len = len(c)  # c cannot be shorter than a or b under the rules
 35         self._count = 0
 36
 37     def _t2i(self, text, lookup):  # text to int
 38         total = 0
 39         length = len(text)
 40         for i in range(length):
 41             total += int(lookup[text[i]]) * 10 ** (length - i - 1)
 42
 43         return total
 44
 45     def summation_check(self, a, b, c, U):
 46         """
 47         a + b = c using the keys, value pairs in U
 48         """
 49         if self._t2i(a, U) + self._t2i(b, U) == self._t2i(c, U):
 50             self._count += 1
 51             print(
 52                 f‘One solution is: {self._t2i(a, U)} + {self._t2i(b, U)} = {self._t2i(c, U)}.  Check:{self._t2i(a, U) + self._t2i(b, U)}‘)
 53             print(‘Dictionary is :‘, U)
 54             print(‘\n‘)
 55             return True
 56         else:
 57             return False
 58
 59     def _solver_r(self, a, b, c, S, index, U, nums):
 60         if index >= len(S):  # Note, this means we are past the final index
 61             # print(U)
 62             return self.summation_check(a, b, c, U)
 63         elif S[index] in U:  # If the next letter in the sequence is already in the dictionary, skip it
 64             return self._solver_r(a, b, c, S, index + 1, U, nums)
 65         else:
 66             for number in nums.copy():
 67                 U[S[index]] = number
 68                 nums.remove(number)
 69                 ans = self._solver_r(a, b, c, S, index + 1, U, nums)
 70                 nums.add(number)
 71                 del U[S[index]]
 72
 73     def solve(self):
 74         U = {}
 75         nums = set(range(10))
 76         S = list(self._a) + list(self._b) + list(self._c)
 77         self._count = 0
 78
 79         self._solver_r(self._a, self._b, self._c, S, 0, U, nums)
 80
 81         if self._count == 0:
 82             print(‘Sorry, no solution found! :(‘)
 83
 84         else:
 85             print(f‘There are a total of {self._count} solutions‘)
 86
 87
 88 # a = SummationSolver(‘pot‘, ‘pan‘, ‘bib‘)
 89 a = SummationSolver(‘boy‘, ‘girl‘, ‘babys‘)
 90 # a = SummationSolver(‘boy‘, ‘girl‘, ‘babysda‘)
 91 a.solve()
 92
 93
 94 # P-4.25
 95 def draw_interval(c):
 96     print(c * ‘-‘)
 97     for i in range(2**c-1):
 98         sum_1 = 1
 99         for j in bin(i)[::-1]:
100             if j == ‘1‘:
101                 sum_1 += 1
102             else:
103                 break
104         print(sum_1 * ‘-‘)
105     print(c * ‘-‘)
106
107
108 # draw_interval(3)
109
110
111 # ------------P4-25-------------------
112 """
113 The hint is that we should use a loop from 0 to 2**c -2
114 and that the number of ticks should be one more than the number of consecutive 1s.
115
116 That‘s a great hint!
117
118 """
119
120
121 def english_ruler(n=3, repeats=10):
122     limit = repeats * (2 ** n - 2)
123     counter = 0
124     while counter <= limit:
125         dashes = 1
126         sub_counter = counter
127         while sub_counter & 1:
128             dashes += 1
129             sub_counter = sub_counter >> 1
130         dashes = min(dashes, n)
131         print(‘-‘ * dashes)
132         counter += 1
133
134
135 # english_ruler(4, 3)
136
137
138 # ----------------P4-26-----------------------
139 """
140 Note, this was solved in C4-14
141
142 """
143
144 # t = TowerOfHanoi(6)
145 # t.solve_hanoi()
146
147
148 # P-4.27
149 def my_walk(path):
150     dirpath = path
151     dir_path_list = []
152     sub_path_list = []
153     if os.path.isdir(path):
154         for filepath in os.listdir(path):
155             if os.path.isdir(os.path.join(path, filepath)):
156                 dir_path_list.append(filepath)
157             else:
158                 sub_path_list.append(filepath)
159     return dirpath, dir_path_list, sub_path_list
160
161
162 # print(my_walk(‘F:\工作总结‘))

项目部分代码参考

原文地址:https://www.cnblogs.com/xiaomingyang/p/12554518.html

时间: 2024-11-12 13:48:02

数据结构与算法 Python语言实现 第四章练习的相关文章

数据结构与算法+Python语言描述pdf

下载地址:网盘下载 本书基于Python语言介绍了数据结构与算法的基本知识,主要内容包括抽象数据类型和Python面向对象程序设计.线性表.字符串.栈和队列.二叉树和树.集合.排序以及算法的基本知识.本书延续问题求解的思路,从解决问题的目标来组织教学内容,注重理论与实践的并用. 下载地址:网盘下载 原文地址:https://www.cnblogs.com/cf3276625841/p/9325994.html

数据结构与算法 Python语言描述 笔记

数据结构 线性表包括顺序表和链表,python的list是顺序表,链表一般在动态语言中不会使用.不过链表还是会出现在各种算法题中. 链表: 单链表 双链表 循环单链表 字符串 有一个重要的点就是字符串的匹配问题,其中比较重要的是无回溯匹配算法(KMP算法),算法比较复杂,重要的思想在于匹配过程中不回溯.实际复杂度是O(m+n), m和n分别是匹配模式串和目标串,一般m<<n. 通配符 *和? * 匹配任意一个字符串 ?匹配任意一个字符 正则表达式 原始字符串:在字符串前面加r前缀,\不作为转义

《数据结构与算法Python语言描述》习题第二章第三题(python版)

ADT Rational: #定义有理数的抽象数据类型 Rational(self, int num, int den) #构造有理数num/den +(self, Rational r2) #求出本对象加r2的结果 -(self, Rational r2) #求出本对象减r2的结果 *(self, Rational r2) #求出本对象乘以r2的结果 /(self, Rational r2) #求出本对象除以r2的结果 num(self) #取出本对象的分子 den(self) #取出本对象的

《数据结构与算法Python语言描述》习题第二章第二题(python版)

ADT Date: #定义日期对象的抽象数据类型 Date(self, int year, int month, int day) #构造表示year/month/day的对象 difference(self, Date d2) #求出self和d2的日期差 plus(self, int n) #计算出日期第self之后n天的日期 num_date(self, int year, int n) #计算year年第n天的日期 adjust(self, int n) #将日期d调整n天(n为带符号整

数据结构与算法 Python语言描述_裘宗燕

链接:https://pan.baidu.com/s/14WDWBy9q84nyGnWOAWP7Mw 密码:x0kc 原文地址:https://www.cnblogs.com/luoshuifusheng/p/9442382.html

2018-06-20 中文代码示例视频演示Python入门教程第四章 控制流

知乎原链 续前作: 中文代码示例视频演示Python入门教程第三章 简介Python 对应在线文档: 4. More Control Flow Tools 录制中出了不少岔子. 另外, 输入法确实是一个短板. 中文代码示例Python入门教程 4.1 if条件语句 & 4.2 for语句_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili? 中文代码示例Python入门教程 4.3 range函数_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili? 中文代码示例Python入门教程 4.4 b

2. 顺序表 数据结构与算法(python)

2. 顺序表 在程序中,经常需要将一组(通常是某个类型的)数据元素作为整体管理和使用,需要创建这种元素组,用变量记录他们,传进传出函数等.一组数据中包含的元素个数可能发生变化(可以增加或删除元素). 对于这种需求,最简单的解决方法便是将这样一组元素看成一个序列,用元素在序列里的位置和顺序,表示实际应用中的某种有意义的信息,或者表示数据之间的某种关系. 这样的一组序列元素的组织形式,我们可以将其抽象为线性表.一个线性表是某类元素的一个集合,还记录着元素之间的一种顺序关系.线性表是最基本的数据结构之

数据结构与算法之排序(归纳总结四)

1.算法描述 归并排序的基本思想是基于合并操作,即合并两个已经有序的序列是容易的,不论这两个序列是顺序存储还是链式存储,合并操作都可以在Ο(m+n)时间内完成(假设两个有序表的长度分别为m和n).为此,由分治法的一般设计步骤得到归并排序的过程为: 1. 划分:将待排序的序列划分为大小相等(或大致相等)的两个子序列: 2. 治理:当子序列的规模大于1时,递归排序子序列,如果子序列规模为1则成为有序序列: 3. 组合:将两个有序的子序列合并为一个有序序列. 2.算法实现 归并的核心在于除了每个子列的

Python语言学习 (四)1.2

访问属性: 1. 直接访问 2. 自定义get,set方法 3. 通过属性修饰器 @property,  @***.setter(修改属性值),  @***.deleter(删除属性,不常用) 4. 描述符(代码重用) 方法: 实例方法:self做第一个参数,被绑定到对象本身,self指向对象本身的指针      也分为公有方法和私有方法,私有方法也是以_开头. 特殊方法:__init__, __str__, __cmp__等等. 类方法:用@classmethod装饰器修饰,第一个参数是cls