codevs2171 棋盘覆盖

题目描述 Description

给出一张n*n(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多少1*2的多米诺骨牌进行掩盖。

输入描述 Input Description

第一行为n,m(表示有m个删除的格子)
第二行到m+1行为x,y,分别表示删除格子所在的位置
x为第x行
y为第y列

输出描述 Output Description

一个数,即最大覆盖格数

样例输入 Sample Input

8 0

样例输出 Sample Output

32

数据范围及提示 Data Size & Hint

经典问题

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#define maxn 105
#define __maxNodes 13145
using namespace std;
// 顶点、边的编号均从 0 开始
// 邻接表储存

vector<int> G[__maxNodes]; /* G[i] 存储顶点 i 出发的边的编号 */
typedef vector<int>::iterator iterator_t;
int num_nodes;
int num_left;
int num_right;
int num_edges;
int matching[__maxNodes]; /* 存储求解结果 */
int check[__maxNodes];
int n,m,rec[maxn][maxn],cnt;
int dx[4] = {-1,0,1,0};
int dy[4] = {0,-1,0,1};
bool judge(int y,int x){
    if(x < 1 || x > n || y < 1 || y > n || rec[y][x]) return false;
    else return true;
}
bool dfs(int u)
{
    for (iterator_t i = G[u].begin(); i != G[u].end(); ++i) { // 对 u 的每个邻接点
        int v = *i;
        if (!check[v]) {     // 要求不在交替路中
            check[v] = true; // 放入交替路
            if (matching[v] == -1 || dfs(matching[v])) {
                // 如果是未盖点,说明交替路为增广路,则交换路径,并返回成功
                matching[v] = u;
                matching[u] = v;
                return true;
            }
        }
    }
    return false; // 不存在增广路,返回失败
}

int hungarian()
{
    int ans = 0;
    memset(matching, -1, sizeof(matching));
    for (int u=0; u < num_left; ++u) {
        if (matching[u] == -1) {
            memset(check, 0, sizeof(check));
            if (dfs(u))
                ++ans;
        }
    }
    return ans;
}
int main(){
    cin>>n>>m;
    int x,y;
    for(int i = 1;i <= m;i++){
        scanf("%d%d",&y,&x);
        rec[y][x] = 1;
    }
    int cu,cv;
    for(int i = 1;i <= n;i++){
        for(int j = 1;j <= n;j++){
            if(rec[i][j]) continue;
            for(int k = 0;k < 4;k++){
                int ny = i + dy[k];
                int nx = j + dx[k];
                if(judge(ny,nx)){
                    cu = (i-1)*n+j-1;
                    cv = (ny-1)*n+nx-1;
                    G[cu].push_back(cv);

                }
            }
        }
    }
    num_left = n*n;
    cout<<hungarian();
    return 0;
}
时间: 2024-12-29 23:37:02

codevs2171 棋盘覆盖的相关文章

棋盘覆盖问题

棋盘覆盖问题       问题描述: 在一个2^k×2^k个方格组成的棋盘中,若有一个方格与其他方格不同,则称该方格为一特殊方格,且称该棋盘为一个特殊棋盘.显然特殊方格在棋盘上出现的位置有4^k种情形.因而对任何k≥0,有4^k种不同的特殊棋盘.     下图–图(1)中的特殊棋盘是当k=3时16个特殊棋盘中的一个: 图(1) 题目要求在棋盘覆盖问题中,要用下图-图(2)所示的4种不同形态的L型骨牌覆盖一个给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖. 图(2) 题目

计算机算法设计与分析之棋盘覆盖问题

一.引子 最近又重新上了算法课,现在想来有点汗颜,大学期间已经学习了一个学期,到现在却依然感觉只是把老师讲过的题目弄懂了,并没有学到算法的一些好的分析方法和思路,碰到一个新的问题后往往感觉很棘手,痛定思痛之后觉得还是好好再学习一遍,争取能理解透彻每种算法的思路和核心,同时也劝诫各位同行们做事要脚踏实地,不能应付老师的作业,最后吃亏的还是自己啊. 二.棋盘覆盖问题 在一个由2^k *2^k个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘 为一特殊棋盘.现有四种L型骨

nyoj 45 棋盘覆盖

棋盘覆盖 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的2×2方格(图2为其中缺右下角的一个),去覆盖2k×2k未被覆盖过的方格,求需要类似图2方格总的个数s.如k=1时,s=1;k=2时,s=5 输入 第一行m表示有m组测试数据: 每一组测试数据的第一行有一个整数数k; 输出 输出所需个数s; 样例输入 3 1 2 3 样例输出 1 5 21 /* 注意寻找图中规律

棋盘覆盖(大数阶乘,大数相除)

棋盘覆盖 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的2×2方格(图2为其中缺右下角的一个),去覆盖2k×2k未被覆盖过的方格,求需要类似图2方格总的个数s.如k=1时,s=1;k=2时,s=5 图1 图2 输入 第一行m表示有m组测试数据:每一组测试数据的第一行有一个整数数k; 输出 输出所需个数s; 样例输入 3 1 2 3 样例输出 1 5 21 accept

算法实验--棋盘覆盖

一.实验目的: 熟悉掌握分治算法设计技术 二.实验要求: 1.按教材所授内容要求,完成“棋盘覆盖问题”算法.得到一个完整正确的程序. 2.棋盘大小:32*32(或16*16) 3.输出最终结果. 三.实验设备及环境: PC机一台.java虚拟机Eclipse或jdk环境 四.问题描述: 通过一门语言写一个棋盘覆盖算法,并对棋盘着色,使L型骨牌能够使用相同的颜色,能够在棋盘中一眼看出棋子所在的地方和对棋盘着色的效果. 五.算法分析: 添加               按钮 对象          

js算法:分治法-棋盘覆盖

在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其他方格不同.则称该方格为一特殊方格,称该棋盘为一特殊棋盘.显然特殊方格在棋盘上出现的位置有 4^k 种情形.因而对不论什么 k>=0 .有 4^k 种不同的特殊棋盘. 下图所看到的的特殊棋盘为 k=2 时 16 个特殊棋盘中的一个. 在棋盘覆盖问题中,要用下图中 4 中不同形态的 L 型骨牌覆盖一个给定的特殊棋牌上除特殊方格以外的全部方格,且不论什么 2 个 L 型骨牌不得重叠覆盖. 易知,在不论什么一个 2^k * 2^k 的棋

算法之棋盘覆盖

棋盘覆盖分析与实现 一.什么是棋盘覆盖? 首先来了解什么是特殊方格在一个2^k*2^k个方格组成的棋盘中,若恰有一个方格与其他方格不同,则称该方格为特殊方格,显然,特殊方格出现的位置有4^k种情况,即k>=0,有4^k种不同的特殊棋盘 棋盘覆盖:用4种不同的L型骨牌覆盖一个给定的特殊棋盘(即特殊方格的位置已经确定了)上除去特殊方格外的所有方格,且任何两个L型骨牌不得重复覆盖,按照规则,我们很容易知道,在2^k*2^k的棋盘覆盖中,用到的L型骨盘数恰为(4^k-1)/3,即(所有方格个数-特殊方格

【棋盘覆盖】(简单)--分治算法

算法实验1:棋盘覆盖 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 2798  Solved: 702 [Submit][Status][Discuss] Description 在一个2k x 2k 个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘.在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖. 口            

棋盘覆盖问题(C++实现)

在一个2k×2k 个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘. 问题: 用4种不同形态的L型骨牌, 覆盖给定特殊棋盘上除特殊方格以外的所有方格,且任何2个不得重叠. 特殊方格在棋盘上出现的位置有4k种情形.因而对任何k>=0,有4k种不同的特殊棋盘. 易知,在任何一个2k * 2k的棋盘中,用到的L型骨牌个数恰为(4k -1)/3. 当k>0时,将2k×2k棋盘分割为4个2k-1×2k-1 子棋盘, Figure (a)所示. 特殊方格必位于4