Training
入口
package org.wordCount; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; public class WordMain { // private static List<String> secondDir = new ArrayList<String>(); public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); //下面两行很重要 conf.set("mapred.jar", "E://eclipse//jar-work//WordMain.jar"); conf.set("mapred.job.tracker", "192.168.190.128:9001"); //设置单词先验概率的保存路径 String priorProbality = "hdfs://192.168.190.128:9000/user/hadoop/output/priorP/priorProbability.txt"; conf.set("priorProbality", priorProbality); //单词总种类数的保存路径 String totalWordsPath = "hdfs://192.168.190.128:9000/user/hadoop/output/totalwords.txt"; conf.set("totalWordsPath", totalWordsPath); //每个类别中单词总数 String wordsInClassPath = "hdfs://192.168.190.128:9000/user/hadoop/mid/wordsFrequence/_wordsInClass/wordsInClass-r-00000"; conf.set("wordsInClassPath", wordsInClassPath); //设置输入 和 单词词频的输出路径 // "/user/hadoop/input/NBCorpus/Country" String input = "hdfs://192.168.190.128:9000/user/hadoop/input/NBCorpus/Country"; String wordsOutput = "hdfs://192.168.190.128:9000/user/hadoop/mid/wordsFrequence"; conf.set("input", input); conf.set("wordsOutput", wordsOutput); //每个类别单词概率保存路径, //单词词频的输入路径也就是单词词频的输出路径 String freqOutput = "hdfs://192.168.190.128:9000/user/hadoop/output/probability/"; conf.set("freqOutput", freqOutput); FileCount.run(conf); WordCount.run(conf); Probability.run(conf); /* System.out.print("----------"); String[] otherArgs = new String[] { "hdfs://192.168.190.128:9000/user/hadoop/test/", "hdfs://192.168.190.128:9000/user/hadoop/wordcount/output2/" }; conf.set("mapred.jar", "E://eclipse//jar-work//WordMain.jar"); Job job = new Job(conf, "word count"); job.setJarByClass(WordMain.class); job.setInputFormatClass(MyInputFormat.class); job.setMapperClass(WordMapper.class); // job.setCombinerClass(WordReducer.class); job.setReducerClass(WordReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // MyUtils.addInputPath(job, new Path(otherArgs[0]), conf); List<Path> inputPaths = getSecondDir(conf, otherArgs[0]); for (Path path : inputPaths) { System.out.println("path = " + path.toString()); MyInputFormat.addInputPath(job, path); } System.out.println("addinputpath ok" ); // FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1);*/ } // 获取文件夹下面二级文件夹路径的方法 static List<Path> getSecondDir(Configuration conf, String folder) throws Exception { Path path = new Path(folder); FileSystem fs = path.getFileSystem(conf); FileStatus[] stats = fs.listStatus(path); List<Path> folderPath = new ArrayList<Path>(); for (FileStatus stat : stats) { if (stat.isDir()) { if (fs.listStatus(stat.getPath()).length > 10) { // 筛选出文件数大于10个的类别作为 // 输入路径 folderPath.add(stat.getPath()); } } } return folderPath; } }
统计各个类别文本数
package org.wordCount; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; /** * * 获取文件个数,并计算先验概率 先验概率保存在/user/hadoop/output/priorP/prior.txt * */ public class FileCount { public static void run(Configuration conf) throws Exception { int sum = 0; String in = conf.get("input"); Map<String, Integer> map = new HashMap<>(); Map<String, Double> priorMap = new HashMap<>(); // map传值(需要筛选测试集,有的类别文本数太少要删除) map = FileCount.getFileNumber(in); //测试打印出每个类别和文件总数 Iterator<Map.Entry<String, Integer>> itrs = map.entrySet().iterator(); while (itrs.hasNext()) { // System.out.println("ok"); Map.Entry<String, Integer> it = itrs.next(); if(it.getValue() <= 10){ //这两行代码可以不计算文本数少于10的类别 itrs.remove(); }else{ sum += it.getValue(); System.out.println(it.getKey() + "\t" + it.getValue()); } } System.out.println("sum = " + sum); String output = conf.get("priorProbality"); Path outputPath = new Path(output); FileSystem fs = outputPath.getFileSystem(conf); FSDataOutputStream outputStream = fs.create(outputPath); //计算每个类别文本占总文本的比率,即先验概率 String ctx = ""; for (Map.Entry<String, Integer> entry : map.entrySet()) { Double result = 0.0; result = Double.parseDouble(entry.getValue().toString()) / sum; priorMap.put(entry.getKey(), result);//保存在priorMap中 ctx += entry.getKey() + "\t" + result + "\n"; } outputStream.writeBytes(ctx); IOUtils.closeStream(outputStream); // 打印概率信息,同时可以写入文件中 // map的另外一种遍历方法 Iterator<Map.Entry<String, Double>> iterators = priorMap.entrySet().iterator(); while (iterators.hasNext()) { Map.Entry<String, Double> iterator = iterators.next(); System.out.println(iterator.getKey() + "\t" + iterator.getValue()); } } // get 方法 public static Map<String, Integer> getFileNumber(String folderPath) throws Exception { Map<String, Integer> fileMap = new HashMap<>(); Configuration conf = new Configuration(); Path path = new Path(folderPath); FileSystem hdfs = path.getFileSystem(conf); FileStatus[] status = hdfs.listStatus(path); // System.out.println(folderPath); // System.out.println("status.length = " + status.length); for (FileStatus stat : status) { if (stat.isDir()) { int length = hdfs.listStatus(stat.getPath()).length; String name = stat.getPath().getName(); fileMap.put(name, length); } } return fileMap; } }
文本中单词计数
package org.wordCount; import java.io.IOException; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Counter; import org.apache.hadoop.mapreduce.Counters; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; public class WordCount { private static MultipleOutputs<Text, IntWritable> mos; // static String baseOutputPath = "/user/hadoop/test_out"; // 设计两个map分别计算每个类别的文本数//和每个类别的单词总数 // private static Map<String, List<String>> fileCountMap = new // HashMap<String, List<String>>(); // private static Map<String, Integer> fileCount = new HashMap<String, // Integer>(); // static Map<String, List<String>> wordsCountInClassMap = new // HashMap<String, List<String>>(); static enum WordsNature { CLSASS_NUMBER, CLASS_WORDS, TOTALWORDS } // map static class First_Mapper extends Mapper<Text, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private final static IntWritable zero = new IntWritable(0); private Text countryName = new Text(); @Override protected void map(Text key, Text value, Mapper<Text, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { String word = itr.nextToken(); if (!(MyUtils.hasDigit(word) || word.contains("."))) { // 去掉无意义词 countryName.set(key.toString() + "\t" + word); context.write(countryName, one); // 统计每个类别中的单词个数 ABL have 1 context.write(key, one); // 统计类别中的单词总数 context.write(new Text(word), zero); // 统计单词总数 } } } } // Reducer static class First_Reducer extends Reducer<Text, IntWritable, Text, IntWritable> { // result 表示每个类别中每个单词的个数 IntWritable result = new IntWritable(); Map<String, List<String>> classMap = new HashMap<String, List<String>>(); Map<String, List<String>> fileMap = new HashMap<String, List<String>>(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } // sum为0,总得单词数加1,统计所有单词的种类 if (sum == 0) { context.getCounter(WordsNature.TOTALWORDS).increment(1); } else {// sum不为0时,通过key的长度来判断, String[] temp = key.toString().split("\t"); if (temp.length == 2) { // 用tab分隔类别和单词 result.set(sum); context.write(key, result); // mos.write(new Text(temp[1]), result, temp[0]); } else { // 类别中单词总数 result.set(sum); mos.write(key, result, "_wordsInClass" + "\\" + "wordsInClass"); } } } @Override protected void cleanup(Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { mos.close(); } @Override protected void setup(Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { mos = new MultipleOutputs<Text, IntWritable>(context); } } public static int run(Configuration conf) throws Exception { // Configuration conf = new Configuration(); // System.out.print("---run-------"); // 设置不同文件的路径 // 文本数路径 // String priorProbality = "hdfs://192.168.190.128:9000/user/hadoop/output/priorP/priorProbality.txt"; // conf.set("priorProbality", priorProbality); Job job = new Job(conf, "file count"); job.setJarByClass(WordCount.class); job.setInputFormatClass(MyInputFormat.class); job.setMapperClass(WordCount.First_Mapper.class); job.setReducerClass(WordCount.First_Reducer.class); // System.out.println("---job-------"); // 过滤掉文本数少于10的类别 String input = conf.get("input"); List<Path> inputPaths = MyUtils.getSecondDir(conf, input); for (Path path : inputPaths) { System.out.println("path = " + path.toString()); MyInputFormat.addInputPath(job, path); } String wordsOutput = conf.get("wordsOutput"); FileOutputFormat.setOutputPath(job, new Path(wordsOutput)); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); int exitCode = job.waitForCompletion(true) ? 0 : 1; // 调用计数器 Counters counters = job.getCounters(); Counter c1 = counters.findCounter(WordsNature.TOTALWORDS); System.out.println("-------------->>>>: " + c1.getDisplayName() + ":" + c1.getName() + ": " + c1.getValue()); // 将单词种类数写入文件中 Path totalWordsPath = new Path("hdfs://192.168.190.128:9000/user/hadoop/output/totalwords.txt"); FileSystem fs = totalWordsPath.getFileSystem(conf); FSDataOutputStream outputStream = fs.create(totalWordsPath); outputStream.writeBytes(c1.getDisplayName() + ":" + c1.getValue()); IOUtils.closeStream(outputStream); // 下次求概率是尝试单词总种类数写到configuration中 // // conf.set("TOTALWORDS", totalWords.toString()); return exitCode; } }
MyInputFormat
package org.wordCount; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.URI; import java.util.HashMap; import java.util.Map; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; public class Probability { private static final Log LOG = LogFactory.getLog(FileInputFormat.class); public static int total = 0; private static MultipleOutputs<Text, DoubleWritable> mos; // Client public static void run(Configuration conf) throws Exception { // 读取单词总数,设置到congfiguration中 String totalWordsPath = conf.get("totalWordsPath"); // String wordsInClassPath = conf.get("wordsInClassPath"); // 先读取单词总类别数 FileSystem fs = FileSystem.get(URI.create(totalWordsPath), conf); FSDataInputStream inputStream = fs.open(new Path(totalWordsPath)); BufferedReader buffer = new BufferedReader(new InputStreamReader(inputStream)); String strLine = buffer.readLine(); String[] temp = strLine.split(":"); if (temp.length == 2) { // temp[0] = TOTALWORDS conf.set(temp[0], temp[1]);// 设置两个String } total = Integer.parseInt(conf.get("TOTALWORDS")); LOG.info("------>total = " + total); System.out.println("total ==== " + total); Job job = new Job(conf, "file count"); job.setJarByClass(Probability.class); job.setMapperClass(WordsOfClassCountMapper.class); job.setReducerClass(WordsOfClassCountReducer.class); String input = conf.get("wordsOutput"); String output = conf.get("freqOutput"); FileInputFormat.addInputPath(job, new Path(input)); FileOutputFormat.setOutputPath(job, new Path(output)); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DoubleWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } // Mapper static class WordsOfClassCountMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> { private static DoubleWritable number = new DoubleWritable(); private static Text className = new Text(); // 保存类别中单词总数 private static Map<String, Integer> filemap = new HashMap<String, Integer>(); protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); int tot = Integer.parseInt(conf.get("TOTALWORDS")); System.out.println("total = " + total); System.out.println("tot = " + tot); // 输入的格式如下: // ALB weekend 1 // ALB weeks 3 Map<String, Map<String, Integer>> baseMap = new HashMap<String, Map<String, Integer>>(); // 保存基础数据 // Map<String, Map<String, Double>> priorMap = new HashMap<String, // Map<String, Double>>(); // 保存每个单词出现的概率 String[] temp = value.toString().split("\t"); // 先将数据存到baseMap中 if (temp.length == 3) { // 文件夹名类别名 if (baseMap.containsKey(temp[0])) { baseMap.get(temp[0]).put(temp[1], Integer.parseInt(temp[2])); } else { Map<String, Integer> oneMap = new HashMap<String, Integer>(); oneMap.put(temp[1], Integer.parseInt(temp[2])); baseMap.put(temp[0], oneMap); } } // 读取数据完毕,全部保存在baseMap中 int allWordsInClass = 0; for (Map.Entry<String, Map<String, Integer>> entries : baseMap.entrySet()) { // 遍历类别 allWordsInClass = filemap.get(entries.getKey()); for (Map.Entry<String, Integer> entry : entries.getValue().entrySet()) { // 遍历类别中的单词词频求概率 double p = (entry.getValue() + 1.0) / (allWordsInClass + tot); className.set(entries.getKey() + "\t" + entry.getKey()); number.set(p); LOG.info("------>p = " + p); mos.write(new Text(entry.getKey()), number, entries.getKey() /*+ "\\" + entries.getKey()*/);//最后一个参数是为了生成文件夹对应的文件 // context.write(className, number); } } } //最后计算类别中不存在单词的概率,每个类别都是一个常数 protected void cleanup(Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); int tot = Integer.parseInt(conf.get("TOTALWORDS")); for (Map.Entry<String, Integer> entry : filemap.entrySet()) { // 遍历类别 double notFind = (1.0) / (entry.getValue() + tot); number.set(notFind); mos.write(new Text(entry.getKey()), number, "_notFound" + "\\" +"notFound"); } mos.close(); } protected void setup(Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub Configuration conf = context.getConfiguration(); mos = new MultipleOutputs<Text, DoubleWritable>(context); String filePath = conf.get("wordsInClassPath"); FileSystem fs = FileSystem.get(URI.create(filePath), conf); FSDataInputStream inputStream = fs.open(new Path(filePath)); BufferedReader buffer = new BufferedReader(new InputStreamReader(inputStream)); String strLine = null; while ((strLine = buffer.readLine()) != null) { String[] temp = strLine.split("\t"); filemap.put(temp[0], Integer.parseInt(temp[1])); } } } // Reducer static class WordsOfClassCountReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> { // result 表示每个文件里面单词个数 DoubleWritable result = new DoubleWritable(); // Configuration conf = new Configuration(); // int total = conf.getInt("TOTALWORDS", 1); protected void reduce(Text key, Iterable<DoubleWritable> values, Reducer<Text, DoubleWritable, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { double sum = 0L; for (DoubleWritable value : values) { sum += value.get(); } result.set(sum); context.write(key, result); } } }
两个小工具
package org.wordCount; import java.util.ArrayList; import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; public class MyUtils { // 获取文件夹下面二级文件夹路径的方法 static List<Path> getSecondDir(Configuration conf, String folder) throws Exception { // System.out.println("----getSencondDir----" + folder); Path path = new Path(folder); FileSystem fs = path.getFileSystem(conf); FileStatus[] stats = fs.listStatus(path); System.out.println("stats.length = " + stats.length); List<Path> folderPath = new ArrayList<Path>(); for (FileStatus stat : stats) { if (stat.isDir()) { // System.out.println("----stat----" + stat.getPath()); if (fs.listStatus(stat.getPath()).length > 10) { // 筛选出文件数大于10个的类别作为 // 输入路径 folderPath.add(stat.getPath()); } } } // System.out.println("----folderPath----" + folderPath.size()); return folderPath; } // 判断一个字符串是否含有数字 static boolean hasDigit(String content) { boolean flag = false; Pattern p = Pattern.compile(".*\\d+.*"); Matcher m = p.matcher(content); if (m.matches()) flag = true; return flag; } }
计算概率
package org.wordCount; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.URI; import java.util.HashMap; import java.util.Map; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; public class Probability { private static final Log LOG = LogFactory.getLog(FileInputFormat.class); public static int total = 0; private static MultipleOutputs<Text, DoubleWritable> mos; // Client public static void run(Configuration conf) throws Exception { // 读取单词总数,设置到congfiguration中 String totalWordsPath = conf.get("totalWordsPath"); // String wordsInClassPath = conf.get("wordsInClassPath"); // 先读取单词总类别数 FileSystem fs = FileSystem.get(URI.create(totalWordsPath), conf); FSDataInputStream inputStream = fs.open(new Path(totalWordsPath)); BufferedReader buffer = new BufferedReader(new InputStreamReader(inputStream)); String strLine = buffer.readLine(); String[] temp = strLine.split(":"); if (temp.length == 2) { // temp[0] = TOTALWORDS conf.set(temp[0], temp[1]);// 设置两个String } total = Integer.parseInt(conf.get("TOTALWORDS")); LOG.info("------>total = " + total); System.out.println("total ==== " + total); Job job = new Job(conf, "file count"); job.setJarByClass(Probability.class); job.setMapperClass(WordsOfClassCountMapper.class); job.setReducerClass(WordsOfClassCountReducer.class); String input = conf.get("wordsOutput"); String output = conf.get("freqOutput"); FileInputFormat.addInputPath(job, new Path(input)); FileOutputFormat.setOutputPath(job, new Path(output)); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DoubleWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } // Mapper static class WordsOfClassCountMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> { private static DoubleWritable number = new DoubleWritable(); private static Text className = new Text(); // 保存类别中单词总数 private static Map<String, Integer> filemap = new HashMap<String, Integer>(); protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); int tot = Integer.parseInt(conf.get("TOTALWORDS")); System.out.println("total = " + total); System.out.println("tot = " + tot); // 输入的格式如下: // ALB weekend 1 // ALB weeks 3 Map<String, Map<String, Integer>> baseMap = new HashMap<String, Map<String, Integer>>(); // 保存基础数据 // Map<String, Map<String, Double>> priorMap = new HashMap<String, // Map<String, Double>>(); // 保存每个单词出现的概率 String[] temp = value.toString().split("\t"); // 先将数据存到baseMap中 if (temp.length == 3) { // 文件夹名类别名 if (baseMap.containsKey(temp[0])) { baseMap.get(temp[0]).put(temp[1], Integer.parseInt(temp[2])); } else { Map<String, Integer> oneMap = new HashMap<String, Integer>(); oneMap.put(temp[1], Integer.parseInt(temp[2])); baseMap.put(temp[0], oneMap); } } // 读取数据完毕,全部保存在baseMap中 int allWordsInClass = 0; for (Map.Entry<String, Map<String, Integer>> entries : baseMap.entrySet()) { // 遍历类别 allWordsInClass = filemap.get(entries.getKey()); for (Map.Entry<String, Integer> entry : entries.getValue().entrySet()) { // 遍历类别中的单词词频求概率 double p = (entry.getValue() + 1.0) / (allWordsInClass + tot); className.set(entries.getKey() + "\t" + entry.getKey()); number.set(p); LOG.info("------>p = " + p); mos.write(new Text(entry.getKey()), number, entries.getKey() /*+ "\\" + entries.getKey()*/);//最后一个参数是为了生成文件夹对应的文件 // context.write(className, number); } } } //最后计算类别中不存在单词的概率,每个类别都是一个常数 protected void cleanup(Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); int tot = Integer.parseInt(conf.get("TOTALWORDS")); for (Map.Entry<String, Integer> entry : filemap.entrySet()) { // 遍历类别 double notFind = (1.0) / (entry.getValue() + tot); number.set(notFind); mos.write(new Text(entry.getKey()), number, "_notFound" + "\\" +"notFound"); } mos.close(); } protected void setup(Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub Configuration conf = context.getConfiguration(); mos = new MultipleOutputs<Text, DoubleWritable>(context); String filePath = conf.get("wordsInClassPath"); FileSystem fs = FileSystem.get(URI.create(filePath), conf); FSDataInputStream inputStream = fs.open(new Path(filePath)); BufferedReader buffer = new BufferedReader(new InputStreamReader(inputStream)); String strLine = null; while ((strLine = buffer.readLine()) != null) { String[] temp = strLine.split("\t"); filemap.put(temp[0], Integer.parseInt(temp[1])); } } } // Reducer static class WordsOfClassCountReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> { // result 表示每个文件里面单词个数 DoubleWritable result = new DoubleWritable(); // Configuration conf = new Configuration(); // int total = conf.getInt("TOTALWORDS", 1); protected void reduce(Text key, Iterable<DoubleWritable> values, Reducer<Text, DoubleWritable, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { double sum = 0L; for (DoubleWritable value : values) { sum += value.get(); } result.set(sum); context.write(key, result); } } }
预测
package org.wordCount; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.URI; import java.util.HashMap; import java.util.Map; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; public class Probability { private static final Log LOG = LogFactory.getLog(FileInputFormat.class); public static int total = 0; private static MultipleOutputs<Text, DoubleWritable> mos; // Client public static void run(Configuration conf) throws Exception { // 读取单词总数,设置到congfiguration中 String totalWordsPath = conf.get("totalWordsPath"); // String wordsInClassPath = conf.get("wordsInClassPath"); // 先读取单词总类别数 FileSystem fs = FileSystem.get(URI.create(totalWordsPath), conf); FSDataInputStream inputStream = fs.open(new Path(totalWordsPath)); BufferedReader buffer = new BufferedReader(new InputStreamReader(inputStream)); String strLine = buffer.readLine(); String[] temp = strLine.split(":"); if (temp.length == 2) { // temp[0] = TOTALWORDS conf.set(temp[0], temp[1]);// 设置两个String } total = Integer.parseInt(conf.get("TOTALWORDS")); LOG.info("------>total = " + total); System.out.println("total ==== " + total); Job job = new Job(conf, "file count"); job.setJarByClass(Probability.class); job.setMapperClass(WordsOfClassCountMapper.class); job.setReducerClass(WordsOfClassCountReducer.class); String input = conf.get("wordsOutput"); String output = conf.get("freqOutput"); FileInputFormat.addInputPath(job, new Path(input)); FileOutputFormat.setOutputPath(job, new Path(output)); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DoubleWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } // Mapper static class WordsOfClassCountMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> { private static DoubleWritable number = new DoubleWritable(); private static Text className = new Text(); // 保存类别中单词总数 private static Map<String, Integer> filemap = new HashMap<String, Integer>(); protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); int tot = Integer.parseInt(conf.get("TOTALWORDS")); System.out.println("total = " + total); System.out.println("tot = " + tot); // 输入的格式如下: // ALB weekend 1 // ALB weeks 3 Map<String, Map<String, Integer>> baseMap = new HashMap<String, Map<String, Integer>>(); // 保存基础数据 // Map<String, Map<String, Double>> priorMap = new HashMap<String, // Map<String, Double>>(); // 保存每个单词出现的概率 String[] temp = value.toString().split("\t"); // 先将数据存到baseMap中 if (temp.length == 3) { // 文件夹名类别名 if (baseMap.containsKey(temp[0])) { baseMap.get(temp[0]).put(temp[1], Integer.parseInt(temp[2])); } else { Map<String, Integer> oneMap = new HashMap<String, Integer>(); oneMap.put(temp[1], Integer.parseInt(temp[2])); baseMap.put(temp[0], oneMap); } } // 读取数据完毕,全部保存在baseMap中 int allWordsInClass = 0; for (Map.Entry<String, Map<String, Integer>> entries : baseMap.entrySet()) { // 遍历类别 allWordsInClass = filemap.get(entries.getKey()); for (Map.Entry<String, Integer> entry : entries.getValue().entrySet()) { // 遍历类别中的单词词频求概率 double p = (entry.getValue() + 1.0) / (allWordsInClass + tot); className.set(entries.getKey() + "\t" + entry.getKey()); number.set(p); LOG.info("------>p = " + p); mos.write(new Text(entry.getKey()), number, entries.getKey() /*+ "\\" + entries.getKey()*/);//最后一个参数是为了生成文件夹对应的文件 // context.write(className, number); } } } //最后计算类别中不存在单词的概率,每个类别都是一个常数 protected void cleanup(Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); int tot = Integer.parseInt(conf.get("TOTALWORDS")); for (Map.Entry<String, Integer> entry : filemap.entrySet()) { // 遍历类别 double notFind = (1.0) / (entry.getValue() + tot); number.set(notFind); mos.write(new Text(entry.getKey()), number, "_notFound" + "\\" +"notFound"); } mos.close(); } protected void setup(Mapper<LongWritable, Text, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub Configuration conf = context.getConfiguration(); mos = new MultipleOutputs<Text, DoubleWritable>(context); String filePath = conf.get("wordsInClassPath"); FileSystem fs = FileSystem.get(URI.create(filePath), conf); FSDataInputStream inputStream = fs.open(new Path(filePath)); BufferedReader buffer = new BufferedReader(new InputStreamReader(inputStream)); String strLine = null; while ((strLine = buffer.readLine()) != null) { String[] temp = strLine.split("\t"); filemap.put(temp[0], Integer.parseInt(temp[1])); } } } // Reducer static class WordsOfClassCountReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> { // result 表示每个文件里面单词个数 DoubleWritable result = new DoubleWritable(); // Configuration conf = new Configuration(); // int total = conf.getInt("TOTALWORDS", 1); protected void reduce(Text key, Iterable<DoubleWritable> values, Reducer<Text, DoubleWritable, Text, DoubleWritable>.Context context) throws IOException, InterruptedException { double sum = 0L; for (DoubleWritable value : values) { sum += value.get(); } result.set(sum); context.write(key, result); } } }
预测的inputformat
package org.wordCount.predict; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; public class WholeFileInputFormat extends FileInputFormat<LongWritable, Text>{ @Override public RecordReader<LongWritable, Text> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { WholeFileRecordReader reader = new WholeFileRecordReader(); reader.initialize(split, context); return reader; } @Override protected boolean isSplitable(JobContext context, Path filename) { return false; } } class WholeFileRecordReader extends RecordReader<LongWritable, Text>{ private FileSplit fileSplit; //保存输入的分片,他将被转换成一条<key, value>记录 private Configuration conf; //配置对象 private Text value = new Text();// private LongWritable key = new LongWritable(); //key对象,为空 private boolean processed = false; //布尔变量记录记录是否被处理过 @Override public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { this.fileSplit = (FileSplit)split; //将输入分片强制转换成fileSplit this.conf = context.getConfiguration(); } @Override public boolean nextKeyValue() throws IOException, InterruptedException { if(!processed){ byte[] contents = new byte[(int)fileSplit.getLength()]; Path file = fileSplit.getPath(); FileSystem fs = file.getFileSystem(conf); FSDataInputStream in = null; try{ in = fs.open(file); IOUtils.readFully(in, contents, 0, contents.length); value.set(contents, 0, contents.length); }finally{ IOUtils.closeStream(in); } processed = true; return true; } return false; } @Override public LongWritable getCurrentKey() throws IOException, InterruptedException { return key; } @Override public Text getCurrentValue() throws IOException, InterruptedException { // TODO Auto-generated method stub return value; } @Override public float getProgress() throws IOException, InterruptedException { return processed ? 1.0f : 0.0f; } @Override public void close() throws IOException { // TODO Auto-generated method stub } }
时间: 2024-10-19 08:03:08