大数据的成长历程

大数据是用scala语言,和java有些不同又比java强大,省去了很多繁琐的东西,scala中的的接口用trait来定义,不同于java的接口,trait中可以有抽象方法也可以有不抽象方法。scala中的方法中还可以定义方法,这在java中是从来没有的。

大数据未来几年发展的重点方向,大数据战略已经在十八届五中全会上作为重点战略方向,中国在大数据方面才刚刚起步,但是在美国已经产生了上千亿的市场价值。举个例子,美国通用公司是一个生产飞机发动机的一个公司,这家公司在飞机发动机的每一个零部件上都安装了传感器,这些传感器在飞机发动机运作的同时不断的把发动机状态的数据传到通用公司的云平台上,通用公司又有很多数据分析中心专门接受这些数据,根据大数据的分析可以随时掌握每一家航空公司发动机的飞行状况,可以告知这些航空公司发动机的哪些部件需要检修或保养,避免飞机事故,通过这种服务通用公司就产生了几百亿美元的产值。

现在正是学习大数据的最好机遇,不花一分钱就可以成为大数据高手,实现年薪50万的梦想。

王家林的第一个中国梦:免费为全社会培养100万名优秀的大数据从业人员!

您可以通过王家林老师的微信号18610086859发红包捐助大数据、互联网+、O2O、工业4.0、微营销、移动互联网等系列免费实战课程, 目前已经发布的王家林免费视频全集如下:

1,《大数据不眠夜:Spark内核天机解密(共100讲)》:http://pan.baidu.com/s/1eQsHZAq

2,《Hadoop深入浅出实战经典》http://pan.baidu.com/s/1mgpfRPu

3,《Spark纯实战公益大讲坛》http://pan.baidu.com/s/1jGpNGwu

4,《Scala深入浅出实战经典》http://pan.baidu.com/s/1sjDWG25

5,《Docker公益大讲坛》http://pan.baidu.com/s/1kTpL8UF

6,《Spark亚太研究院Spark公益大讲堂》http://pan.baidu.com/s/1i30Ewsd

7,DT大数据梦工厂Spark、Scala、Hadoop的所有视频、PPT和代码在百度云网盘的链接:
http://pan.baidu.com/share/home?uk=4013289088#category/type=0&qq-pf-to=pcqq.group

王家林免费在51CTO发布的1000集合大数据spark、hadoop、scala、docker视频:

1,《Scala深入浅出实战初级入门经典视频课程》http://edu.51cto.com/lesson/id-66538.html

2,《Scala深入浅出实战中级进阶经典视频课程》http://edu.51cto.com/lesson/id-67139.html

3,《Akka深入浅出实战经典视频课程》http://edu.51cto.com/lesson/id-77672.html

4,《Spark亚太研究院决胜大数据时代公益大讲堂》http://edu.51cto.com/lesson/id-30815.html

5,《云计算Docker虚拟化公益大讲坛 》http://edu.51cto.com/lesson/id-61776.html

6,《Spark 大讲堂(纯实战手动操作)》http://edu.51cto.com/lesson/id-78653.html

7,《Hadoop深入浅出实战经典视频课程-集群、HDFS、Yarn、MapReduce》http://edu.51cto.com/lesson/id-77141.html

8,《从技术角度思考Hadoop到底是什么》http://edu.51cto.com/course/course_id-1151.html

“DT大数据梦工厂”团队第一个中国梦:免费为社会培养100万名优秀的大数据从业人员。每天早上4点起持续分享大数据、互联网+、O2O、工业4.0、微营销、移动互联网等领域的

精华内容,帮助您和公司在DT时代打造智慧大脑,将生产力提高百倍以上!

DT大数据梦工厂微信公众号:DT_Spark,二维码如下,期待大家加入!

时间: 2024-12-22 23:10:01

大数据的成长历程的相关文章

Spark大数据的学习历程

Spark主要的编程语言是Scala,选择Scala是因为它的简洁性(Scala可以很方便在交互式下使用)和性能(JVM上的静态强类型语言).Spark支持Java编程,但对于使用Java就没有了Spark-Shell这样方便的工具,其它与Scala编程是一样的,因为都是JVM上的语言,Scala与Java可以互操作,Java编程接口其实就是对Scala的封装. 大数据未来几年发展的重点方向,大数据战略已经在十八届五中全会上作为重点战略方向,中国在大数据方面才刚刚起步,但是在美国已经产生了上千亿

从大数据的应用谈如何成为大数据大师的历程

以下数据显示,中国大数据IT应用投资规模,应用以五大行业最高,其中以互联网行业占比最高,占大数据IT应用投资规模的28.9%,其次是电信领域(19.9%),第三为金融领域(17.5%),政府和医疗分别为第四和第五,请看如下图: 根据国际知名咨询公司麦肯锡的报告显示:在大数据应用综合价值潜力方面,信息技术.金融保险.政府及批发贸易四大行业潜力最高,具体到行业内每家公司的数据量来看,信息.金融保险.计算机及电子设备.公用事业四类的数据量最大,因此:无论是投资规模和应用潜力来看,信息行业(互联网和电信

大数据的学习历程

大数据scala语言不仅可以在函数中嵌套函数,还可以定义偏函数. def sum(a :Int,b:Int,c:Int) = a+b+c val pld = sum _ println(pld(1,2,3)) println(pld.apply(1, 2, 3)) val ped = sum(1,_:Int,3) println(ped(2)) println(ped.apply(2)) val add = (x : Int)=> x+2 println(add.apply(3)) 定义偏函数是

从菜鸟到大数据高手的历程

大数据是用scala语言,和java有些不同又比java强大,省去了很多繁琐的东西,scala中的的接口用trait来定义,不同于java的接口,trait中可以有抽象方法也可以有不抽象方法.scala中的方法中还可以定义方法,这在java中是从来没有的. 大数据未来几年发展的重点方向,大数据战略已经在十八届五中全会上作为重点战略方向,中国在大数据方面才刚刚起步,但是在美国已经产生了上千亿的市场价值.举个例子,美国通用公司是一个生产飞机发动机的一个公司,这家公司在飞机发动机的每一个零部件上都安装

大数据概论

大数据概述 1.大数据时代 1.第三次信息化浪潮 根据IBM前首席执行官郭士纳的观点,IT领域每隔十五年就会迎来一次重大变革. 信息化浪潮 发生时间 标志 解决问题 代表企业 第一次浪潮 1980年前后 个人计算机 信息处理 Inter.AMD.IBM.苹果.微软.联想.戴尔.惠普等 第二次浪潮 1995年前后 互联网 信息传输 雅虎.谷歌.阿里巴巴.百度.腾讯等 第三次浪潮 2010年前后 物联网.云计算和大数据 信息爆炸 将涌现出一批新的市场标杆企业 2.信息科技为大数据时代提供技术支撑 存

大数据是什么?华为云学院带你探索大数据之旅

大数据是什么?华为云学院带你探索大数据之旅我们首先从大数据是什么开始讲起,!下面由我来带领大家!展开我们本次的大数据学习之旅!大数据是什么,内容将包括大数据的产生,发展大数据的基本概念.首先我们来追溯一下大数据的产生与发展,大数据的产生和发展主要经历了三个阶段. 第一个阶段,我们称为是萌芽期!自上世纪九十年代至本世纪初,随着数据挖掘理论和数据库技术的逐步成熟,一批商业智能工具和知识的管理技术也开始得到应用,比如数据仓库,专家系统知识管理系统等等.第二阶段我们称为是成熟期.本世纪的前十年Web2.

大数据与 AI 生态中的开源技术总结

本文由云+社区发表 作者:堵俊平 在数据爆炸与智能革命的新时代,新的平台与应用层出不穷,开源项目推动了前沿技术和业界生态快速发展.本次分享将以技术和生态两大视角来看大数据和人工智能技术的发展,通过分析当下热门的开源产品和技术,来梳理未来的行业生态以及技术趋势. 我们今天的主题分为三块,第一是从开源的角度看技术.产品和生态,第二,我们从腾讯云大数据的角度梳理开源的实践,并跟大家分享一下我们最近一段时间或者最近一年以来我们的贡献和成果.最后会跟大家一起探讨一下开源的大数据以及AI这个生态当中的一些热

学习大数据需要掌握的知识,需要学习的数据技术

大数据的发展历程总体上可以划分为三个重要阶段,萌芽期.成熟期和大规模应用期,20世纪90年至21世纪初,为萌芽期,随着,一批商业智能工具和知识管理技术的开始和应用,度过了数据萌芽,21世纪前十年则为成熟期,主要标志为,大数据解决方案逐渐走向成熟,形成了并行计算与分布式系统两大核心技,谷歌的GFS和MapReduce等大数据技术受到追捧,Hadoop平台开始大行期道,2010年以后,为大规模应用期,标志为,数据应用***各行各业,数据驱动决策,信息社会智能化程度快速提高. 数据时代的到来,也推动了

大数据发展历程

一:大数据概念 大数据是由数量巨大.结构复杂.类型众多的数据结构的数据集合,在合理时间内,通过对该该数据集合的管理.处理.并整理成为能帮助政府机构和企业进行管理.决策的讯息. 二:大数据特点 大数据通常具有以下几种特点: 1.大量:即数据体量庞大,包括采集.存储和计算的量都非常大. 2.高速:要求处理速度快,从各类型的数据中快速获得高价值的信息 3.多样:数据种类繁多 4.价值:价值密度低,由于数据产生量巨大且速度非常快,必然形成各种有效数据和无效数据错杂的状态,因此数据价值的密度低. 5.在线