Smali 语法文档

可以选择保存成pdf格式,查询起来挺方便的

if v0==0 go cond_0

if-eqz v0, :cond_0

if v0!=0 go cond_0

if-nez v0, :cond_0

v1赋属性值

const/4 v1, 0x2

iput v1, p0, Lcom/android/shortcuts/setting/SettingActivity;->h:I

获得属性值 赋值v2

iget v2, p0, Lcom/android/shortcuts/setting/SettingActivity;->h:I

字符串赋值

const-string v0, "\u60a8\u7684\u8bd5"

SettingActivity;->a方法调用

参数 v0

invoke-direct {p0, v0}, Lcom/android/shortcuts/setting/SettingActivity;->a(Ljava/lang/String;)V

const/4 v1, 0x1

Types

dalvik‘s bytecode has two major classes of types, primitive types and reference types. Reference types are objects and arrays, everything else is a primitive.

Primitives are represented by a single letter. I didn‘t come up with these abbreviations - they are what is actually stored in the dex file, in string form. They are specified in the dex-format.html document (dalvik/docs/dex-format.html in the AOSP repository)

V void - can only be used for return types
Z boolean
B byte
S short
C char
I int
J long (64 bits)
F float
D double (64 bits)

Objects take the form Lpackage/name/ObjectName; - where the leading L indicates that it is an object type, package/name/ is the package that the object is in, ObjectName is the name of the object, and ; denotes the end of the object name. This would be equivalent topackage.name.ObjectName in java. Or for a more concrete example, Ljava/lang/String; is equivalent to java.lang.String

Arrays take the form [I - this would be an array of ints with a single dimension. i.e. int[] in java. For arrays with multiple dimensions, you simply add more [ characters. [[I = int[][][[[I = int[][][], etc. (Note: The maximum number of dimensions you can have is 255).

You can also have arrays of objects, [Ljava/lang/String; would be an array of Strings.

Methods

Methods are always specified in a very verbose form that includes the type that contains the method, the method name, the types of the parameters and the return type. All this information is required for the virtual machine to be able to find the correct method, and to be able to perform static analysis on the bytecode (for verification/optimization purposes)

They take the form

Lpackage/name/ObjectName;->MethodName(III)Z

In this example, you should recognize Lpackage/name/ObjectName; as a type. MethodName is obviously the name of the method. (III)Z is the method‘s signature. III are the parameters (in this case, 3 ints), and Z is the return type (bool).

The method parameters are listed one right after another, with no separators between them.

Here‘s a more complex example:

method(I[[IILjava/lang/String;[Ljava/lang/Object;)Ljava/lang/String;

In java, this would be

String method(int, int[][], int, String, Object[])

Fields

Fields are likewise always specified in verbose form that includes the type that contains the field, the name of the field, and the type of the field. Again, this is to allow the virtual machine to be able to find the correct field, as well as to perform static analysis on the bytecode.

They take the form

Lpackage/name/ObjectName;->FieldName:Ljava/lang/String;

This should be pretty self-explanatory - it is the package name, the field name and the type of the field respectively.

Opcode (hex) Opcode name Explanation Example
00 nop No operation 0000 - nop 
01 move vx,vy Moves the content of vy into vx. Both registers must be in the first 256 register range. 0110 - move v0, v1
Moves v1 into v0.
02 move/from16 vx,vy Moves the content of vy into vx. vy may be in the 64k register range while vx is one of the first 256 registers. 0200 1900 - move/from16 v0, v25
Moves v25 into v0.
03 move/16    
04 move-wide     
05 move-wide/from16 vx,vy Moves a long/double value from vy to vx. vy may be in the 64k register range while wx is one of the first 256 registers. 0516 0000 - move-wide/from16 v22, v0
Moves v0 into v22.
06 move-wide/16    
07 move-object vx,vy Moves the object reference from vy to vx. 0781 - move-object v1, v8
Moves the object reference in v8 to v1.
08 move-object/from16 vx,vy Moves the object reference from vy to vx, vy can address 64k registers and vx can address 256 registers. 0801 1500 - move-object/from16 v1, v21
Move the object reference in v21 to v1.
09 move-object/16    
0A move-result vx Move the result value of the previous method invocation into vx. 0A00 - move-result v0
Move the return value of a previous method invocation into v0.
0B move-result-wide vx Move the long/double result value of the previous method invocation into vx,vx+1. 0B02 - move-result-wide v2
Move the long/double result value of the previous method invocation into v2,v3.
0C move-result-object vx Move the result object reference of the previous method invocation into vx. 0C00 - move-result-object v0
0D move-exception vx Move the exception object reference thrown during a method invocation into vx.  0D19 - move-exception v25
0E return-void Return without a return value 0E00 - return-void
0F return vx Return with vx return value 0F00 - return v0
Returns with return value in v0.

10 return-wide vx Return with double/long result in vx,vx+1. 1000 - return-wide v0
Returns with a double/long value in v0,v1.
11 return-object vx Return with vx object reference value. 1100 - return-object v0
Returns with object reference value in v0
12 const/4 vx,lit4 Puts the 4 bit constant into vx 1221 - const/4 v1, #int2
Moves literal 2 into v1. The destination register is in the lower 4 bit in the second byte, the literal 2 is in the higher 4 bit.
13 const/16 vx,lit16 Puts the 16 bit constant into vx 1300 0A00 - const/16 v0, #int 10
Puts the literal constant of 10 into v0.
14 const vx, lit32 Puts the integer constant into vx 1400 4E61 BC00 - const v0, #12345678 // #00BC614E
Moves literal 12345678 into v0.
15 const/high16 v0, lit16 Puts the 16 bit constant into the topmost bits of the register. Used to initialize float values. 1500 2041 - const/high16 v0, #float 10.0 // #41200000
Moves the floating literal of 10.0 into v0. The 16 bit literal in the instruction carries the top 16 bits of the floating point number.
16 const-wide/16 vx, lit16 Puts the integer constant into vx and vx+1 registers, expanding the integer constant into a long constant.. 1600 0A00 - const-wide/16 v0, #long 10
Moves literal 10 into v0 and v1 registers.
17 const-wide/32 vx, lit32 Puts the 32 bit constant into vx and vx+1 registers, expanding the integer constant into a long constant. 1702 4e61 bc00 - const-wide/32 v2, #long 12345678 // #00bc614e
Puts #12345678 into v2 and v3 registers.
18 const-wide vx, lit64 Puts the 64 bit constant into vx and vx+1 registers. 1802 874b 6b5d 54dc 2b00- const-wide v2, #long 12345678901234567 // #002bdc545d6b4b87
Puts #12345678901234567 into v2 and v3 registers.
19 const-wide/high16 vx,lit16 Puts the 16 bit constant into the highest 16 bit of vx and vx+1 registers. Used to initialize double values. 1900 2440 - const-wide/high16 v0, #double 10.0 // #402400000
Puts the double constant of 10.0 into v0 register.
1A const-string vx,string_id Puts reference to a string constant identified by string_id into vx. 1A08 0000 - const-string v8, "" // [email protected]
Puts reference to [email protected] (entry #0 in the string table) into v8.
1B const-string-jumbo    
1C const-class vx,type_id Moves the class object of a class identified by type_id (e.g. Object.class) into vx. 1C00 0100 - const-class v0, Test3 // [email protected]
Moves reference to Test3.class (entry#1 in the type id table) into 
1D monitor-enter vx Obtains the monitor of the object referenced by vx. 1D03 - monitor-enter v3
Obtains the monitor of the object referenced by v3.
1E monitor-exit Releases the monitor of the object referenced by vx. 1E03 - monitor-exit v3
Releases the monitor of the object referenced by v3.
1F check-cast vx, type_id Checks whether the object reference in vx can be cast to an instance of a class referenced by type_id. Throws ClassCastException if the cast is not possible, continues execution otherwise. 1F04 0100 - check-cast v4, Test3 // [email protected]
Checks whether the object reference in v4 can be cast to [email protected] (entry #1 in the type id table)
20 instance-of vx,vy,type_id Checks whether vy is instance of a class identified by type_id. Sets vx non-zero if it is, 0 otherwise. 2040 0100 - instance-of v0, v4, Test3 // [email protected]
Checks whether the object reference in v4 is an instance of [email protected] (entry #1 in the type id table). Sets v0 to non-zero if v4 is instance of Test3, 0 otherwise.
21 array-length vx,vy Calculates the number of elements of the array referenced by vy and puts the length value into vx. 2111 - array-length v1, v1
Calculates the number of elements of the array referenced by v1 and puts the result into v1.
22 new-instance vx,type Instantiates an object type and puts the reference of the newly created instance into vx. 2200 1500 - new-instance v0, java.io.FileInputStream // [email protected]
Instantiates [email protected] (entry #15H in the type table) and puts its reference into v0.
23 new-array vx,vy,type_id Generates a new array of type_id type and vy element size and puts the reference to the array into vx. 2312 2500 - new-array v2, v1, char[] // [email protected]
Generates a new array of typ[email protected] type and v1 size and puts the reference to the new array into v2.
24 filled-new-array {parameters},type_id Generates a new array of type_id and fills it with the parameters5. Reference to the newly generated array can be obtained by a move-result-object instruction, immediately following the filled-new-array instruction. 2420 530D 0000 - filled-new-array {v0,v0},[I // [email protected]
Generates a new array of [email protected] The array‘s size will be 2 and both elements will be filled with the contents of v0 register.
25 filled-new-array-range {vx..vy},type_id Generates a new array of type_id and fills it with a range of parameters. Reference to the newly generated array can be obtained by a move-result-object instruction, immediately following the filled-new-array instruction. 2503 0600 1300 - filled-new-array/range {v19..v21}, [B // [email protected]
Generates a new array of [email protected] The array‘s size will be 3 and the elements will be filled using the v19,v20 and v21 registers4.
26 fill-array-data vx,array_data_offset Fills the array referenced by vx with the static data. The location of the static data is the sum of  the position of the current instruction and the offset 2606 2500 0000 - fill-array-data v6, 00e6 // +0025
Fills the array referenced by v0 with the static data at current instruction+25H words location. The offset is expressed as a 32-bit number. The static data is stored in the following format:
0003 // Table type: static array data
0400 // Byte per array element (in this case, 4 byte integers)
0300 0000 // Number of elements in the table
0100 0000  // Element #0: integer 1
0200 0000 // Element #1: integer 2
0300 0000 // Element #2: integer3
27 throw vx Throws an exception object. The reference of the exception object is in vx. 2700 - throw v0
Throws an exception. The exception object reference is in v0.
28 goto target Unconditional jump by short offset2 28F0 - goto 0005 // -0010
Jumps to current position-16 words (hex 10). 0005 is the label of the target instruction.
29 goto/16 target Unconditional jump by 16 bit offset2. 2900 0FFE - goto/16 002f // -01f1
Jumps to the current position-1F1H words. 002F is the label of the target instruction.
2A goto/32 target    
2B packed-switch vx,table Implements a switch statement where the case constants are close to each other. The instruction uses an index table. vx indexes into this table to find the offset of the instruction for a particular case. If vx falls out of the index table, the execution continues on the next instruction (default case). 2B02 0C00 0000 - packed-switch v2, 000c // +000c
Execute a packed switch according to the switch argument in v2. The position of the index table is at current instruction+0CH words. The table looks like the following:
0001 // Table type: packed switch table
0300 // number of elements
0000 0000 // element base
0500 0000  0: 00000005 // case 0: +00000005
0700 0000  1: 00000007 // case 1: +00000007
0900 0000  2: 00000009 // case 2: +00000009
2C sparse-switch vx,table Implements a switch statement with sparse case table. The instruction uses a lookup table with case constants and offsets for each case constant. If there is no match in the table, execution continues on the next instruction (default case). 2C02 0c00 0000 - sparse-switch v2, 000c // +000c
Execute a sparse switch according to the switch argument in v2. The position of the lookup table is at current instruction+0CH words. The table looks like the following.
0002 // Table type: sparse switch table
0300 // number of elements
9cff ffff // first case: -100
fa00 0000 // second case constant: 250
e803 0000 // third case constant: 1000
0500 0000 // offset for the first case constant: +5
0700 0000 // offset for the second case constant: +7
0900 0000 // offset for the third case constant: +9
2D cmpl-float Compares the float values in vy and vz and sets the integer value in vx accordingly3 2D00 0607 - cmpl-float v0, v6, v7
Compares the float values in v6 and v7 then sets v0 accordingly. NaN bias is less-than, the instruction will return -1 if any of the parameters is NaN.
2E cmpg-float vx, vy, vz Compares the float values in vy and vz and sets the integer value in vx accordingly3. 2E00 0607 - cmpg-float v0, v6, v7
Compares the float values in v6 and v7 then sets v0 accordingly. NaN bias is greater-than, the instruction will return 1 if any of the parameters is NaN.
2F cmpl-double vx,vy,vz Compares the double values in vy and vz2 and sets the integer value in vx accordingly3. 2F19 0608 - cmpl-double v25, v6, v8
Compares the double values in v6,v7 and v8,v9 and sets v25 accordingly. NaN bias is less-than, the instruction will return -1 if any of the parameters is NaN.
30 cmpg-double vx, vy, vz Compares the double values in vy and vz2 and sets the integer value in vx accordingly3. 3000 080A - cmpg-double v0, v8, v10
Compares the double values in v8,v9 and v10,v11 then sets v0 accordingly. NaN bias is greater-than, the instruction will return 1 if any of the parameters is NaN.
31 cmp-long vx, vy, vz Compares the long values in vy and vz and sets the integer value in vx accordingly3. 3100 0204 - cmp-long v0, v2, v4
Compares the long values in v2 and v4 then sets v0 accordingly.
32 if-eq vx,vy,target Jumps to target if vx==vy2. vx and vy are integer values. 32b3 6600 - if-eq v3, v11, 0080 // +0066
Jumps to the current position+66H words if v3==v11. 0080 is the label of the target instruction.
33 if-ne vx,vy,target Jumps to target if vx!=vy2. vx and vy are integer values. 33A3 1000 - if-ne v3, v10, 002c // +0010
Jumps to the current position+10H words if v3!=v10. 002c is the label of the target instruction.
34 if-lt vx,vy,target Jumps to target is vx<vy2. vx and vy are integer values. 3432 CBFF - if-lt v2, v3, 0023 // -0035
Jumps to the current position-35H words if v2<v3. 0023 is the label of the target instruction.
35 if-ge vx, vy,target Jumps to target if vx>=vy2. vx and vy are integer values. 3510 1B00 - if-ge v0, v1, 002b // +001b
Jumps to the current position+1BH words if v0>=v1. 002b is the label of the target instruction.
36 if-gt vx,vy,target Jumps to target if vx>vy2. vx and vy are integer values. 3610 1B00 - if-ge v0, v1, 002b // +001b
Jumps to the current position+1BH words if v0>v1. 002b is the label of the target instruction.
37 if-le vx,vy,target Jumps to target if vx<=vy2. vx and vy are integer values. 3756 0B00 - if-le v6, v5, 0144 // +000b
Jumps to the current position+0BH words if v6<=v5. 0144 is the label of the target instruction.
38 if-eqz vx,target Jumps to target if vx==02. vx is an integer value. 3802 1900 - if-eqz v2, 0038 // +0019
Jumps to the current position+19H words if v2==0. 0038 is the label of the target instruction.
39 if-nez vx,target Checks vx and jumps if vx is nonzero2 3902 1200 - if-nez v2, 0014 // +0012
Jumps to current position+18 words (hex 12) if v2 is nonzero. 0014 is the label of the target instruction.
3A if-ltz vx,target Checks vx and jumps if vx<02. 3A00 1600 - if-ltz v0, 002d // +0016
Jumps to the current position+16H words if v0<0. 002d is the label of the target instruction.
3B if-gez vx,target Checks vx and jumps if vx>=02. 3B00 1600 - if-gez v0, 002d // +0016
Jumps to the current position+16H words if v0 >=0. 002d is the label of the target instruction.
3C if-gtz vx,target Checks vx and jumps if vx>02. 3C00 1D00 - if-gtz v0, 004a // +001d
Jumps to the current position+1DH words if v0>0. 004A is the label of the target instruction.
3D if-lez vx,target Checks vx and jumps if vx<=02. 3D00 1D00 - if-lez v0, 004a // +001d
Jumps to the current position+1DH words if v0<=0. 004A is the label of the target instruction.
3E unused_3E    
3F unused_3F    
40 unused_40    
41 unused_41    
42 unused_42    
43 unused_43    
44 aget vx,vy,vz Gets an integer value of an object reference array into vx. The array is referenced by vy and is indexed by vz. 4407 0306 - aget v7, v3, v6
Gets an integer array element. The array is referenced by v3 and the element is indexed by v6. The element will be put into v7.
45 aget-wide vx,vy,vz Gets a long/double value of long/double array into vx,vx+1. The array is referenced by vy and is indexed by vz. 4505 0104 - aget-wide v5, v1, v4
Gets a long/double array element. The array is referenced by v1 and the element is indexed by v4. The element will be put into v5,v6.
46 aget-object vx,vy,vz Gets an object reference value of an object reference array into vx. The array is referenced by vy and is indexed by vz. 4602 0200 - aget-object v2, v2, v0
Gets an object reference array element. The array is referenced by v2 and the element is indexed by v0. The element will be put into v2.
47 aget-boolean vx,vy,vz Gets a boolean value of a boolean array into vx. The array is referenced by vy and is indexed by vz. 4700 0001 - aget-boolean v0, v0, v1 
Gets a boolean array element. The array is referenced by v0 and the element is indexed by v1. The element will be put into v0.
48 aget-byte vx,vy,vz Gets a byte value of a byte array into vx. The array is referenced by vy and is indexed by vz. 4800 0001 - aget-byte v0, v0, v1
Gets a byte array element. The array is referenced by v0 and the element is indexed by v1. The element will be put into v0.
49 aget-char vx, vy,vz Gets a char value  of a character array into vx. The element is indexed by vz, the array object is referenced by vy 4905 0003 - aget-char v5, v0, v3
Gets a character array element. The array is referenced by v0 and the element is indexed by v3. The element will be put into v5.
4A aget-short vx,vy,vz Gets a short value  of a short array into vx. The element is indexed by vz, the array object is referenced by vy. 4A00 0001 - aget-short v0, v0, v1
Gets a short array element. The array is referenced by v0 and the element is indexed by v1. The element will be put into v0.
4B aput vx,vy,vz Puts the integer value in vx into an element of an integer array. The element is indexed by vz, the array object is referenced by vy. 4B00 0305 - aput v0, v3, v5
Puts the integer value in v2 into an integer array referenced by v0. The target array element is indexed by v1.
4C aput-wide vx,vy,vz Puts the double/long value in vx,vx+1 into a double/long array. The array is referenced by vy, the element is indexed by vz. 4C05 0104 - aput-wide v5, v1, v4
Puts the double/long value in v5,v6 into a double/long array referenced by v1. The target array element is indexed by v4.
4D aput-object vx,vy,vz Puts the object reference value in vx into an element of an object reference array. The element is indexed by vz, the array object is referenced by vy. 4D02 0100 - aput-object v2, v1, v0
Puts the object reference value in v2 into an object reference array referenced by v0. The target array element is indexed by v1.
4E aput-boolean vx,vy,vz Puts the boolean value in vx into an element of a boolean array. The element is indexed by vz, the array object is referenced by vy. 4E01 0002 - aput-boolean v1, v0, v2
Puts the boolean value in v1 into an object reference array referenced by v0. The target array element is indexed by v2.
4F aput-byte vx,vy,vz Puts the byte value in vx into an element of a byte array. The element is indexed by vz, the array object is referenced by vy. 4F02 0001 - aput-byte v2, v0, v1
Puts the boolean value in v2 into a byte array referenced by v0. The target array element is indexed by v1.
50 aput-char vx,vy,vz Puts the char value in vx into an element of a character array. The element is indexed by vz, the array object is referenced by vy. 5003 0001 - aput-char v3, v0, v1
Puts the character value in v3 into a character array referenced by v0. The target array element is indexed by v1.
51 aput-short vx,vy,vz Puts the short value in vx into an element of a short array. The element is indexed by vz, the array object is referenced by vy. 5102 0001 - aput-short v2, v0, v1
Puts the short value in v2 into a character array referenced by v0. The target array element is indexed by v1.
52 iget vx, vy, field_id Reads an instance field into vx. The instance is referenced by vy. 5210 0300 - iget v0, v1, Test2.i6:I // [email protected]
Reads [email protected] into v0 (entry #3 in the field id table). The instance is referenced by v1.
53 iget-wide vx,vy,field_id Reads an instance field into vx1. The instance is referenced by vy. 5320 0400 - iget-wide v0, v2, Test2.l0:J // [email protected]
Reads [email protected] into v0 and v1 registers (entry #4 in the field id table). The instance is referenced by v2.
54 iget-object vx,vy,field_id Reads an object reference instance field into vx. The instance is referenced by vy. iget-object v1, v2, LineReader.fis:Ljava/io/FileInputStream; // [email protected]
Reads [email protected] into v1  (entry #2 in the field id table). The instance is referenced by v2.
55 iget-boolean vx,vy,field_id Reads a boolean instance field into vx. The instance is referenced by vy. 55FC 0000 - iget-boolean v12, v15, Test2.b0:Z // [email protected]
Reads the boolean [email protected] into v12 register (entry #0 in the field id table). The instance is referenced by v15.
56 iget-byte vx,vy,field_id Reads a byte instance field into vx. The instance is referenced by vy. 5632 0100 - iget-byte v2, v3, Test3.bi1:B // [email protected]
Reads the char [email protected] into v2 register (entry #1 in the field id table). The instance is referenced by v3.
57 iget-char vx,vy,field_id Reads a char instance field into vx. The instance is referenced by vy. 5720 0300 - iget-char v0, v2, Test3.ci1:C // [email protected]
Reads the char [email protected] into v0 register (entry #3 in the field id table). The instance is referenced by v2.
58 iget-short vx,vy,field_id Reads a short instance field into vx. The instance is referenced by vy. 5830 0800 - iget-short v0, v3, Test3.si1:S // [email protected]
Reads the short [email protected] into v0 register (entry #8 in the field id table). The instance is referenced by v3.
59 iput vx,vy, field_id Puts vx into an instance field. The instance is referenced by vy. 5920 0200 - iput v0,v2, Test2.i6:I // fie[email protected]
Stores v0 into [email protected] (entry #2 in the field id table). The instance is referenced by v2.
5A iput-wide vx,vy, field_id Puts the wide value located in vx and vx+1 registers into an instance field. The instance is referenced by vy. 5A20 0000 - iput-wide v0,v2, Test2.d0:D // [email protected] 
Stores the wide value in v0, v1 registers into [email protected] (entry #0 in the field id table). The instance is referenced by v2.
5B iput-object vx,vy,field_id Puts the object reference in vx into an instance field. The instance is referenced by vy. 5B20 0000 - iput-object v0, v2, LineReader.bis:Ljava/io/BufferedInputStream; // [email protected]
Stores the object reference in v0 into [email protected] (entry #0 in the field table). The instance is referenced by v2.
5C iput-boolean vx,vy, field_id Puts the boolean value located in vx into an instance field. The instance is referenced by vy. 5C30 0000 - iput-boolean v0, v3, Test2.b0:Z // [email protected]
Puts the boolean value in v0 into [email protected] (entry #0 in the field id table). The instance is referenced by v3.
5D iput-byte vx,vy,field_id Puts the byte value located in vx into an instance field. The instance is referenced by vy. 5D20 0100 - iput-byte v0, v2, Test3.bi1:B // [email protected]
Puts the boolean value in v0 into [email protected] (entry #1 in the field id table). The instance is referenced by v2.
5E iput-char vx,vy,field_id Puts the char value located in vx into an instance field. The instance is referenced by vy. 5E20 0300 - iput-char v0, v2, Test3.ci1:C // [email protected]
Puts the char value in v0 into [email protected] (entry #3 in the field id table). The instance is referenced by v2.
5F iput-short vx,vy,field_id Puts the short value located in vx into an instance field. The instance is referenced by vy. 5F21 0800 - iput-short v1, v2, Test3.si1:S // [email protected]
Puts the short value in v1 into [email protected] (entry #8 in the field id table). The instance is referenced by v2.
60 sget vx,field_id Reads the integer field identified by the field_id into vx. 6000 0700 - sget v0, Test3.is1:I // [email protected]
Reads [email protected] (entry #7 in the field id table) into v0.
61 sget-wide vx, field_id Reads the static field identified by the field_id into vx and vx+1 registers. 6100 0500 - sget-wide v0, Test2.l1:J // [email protected]
Reads [email protected] (entry #5 in the field id table) into v0 and v1 registers.
62 sget-object vx,field_id Reads the object reference field identified by the field_id into vx. 6201 0C00 - sget-object v1, Test3.os1:Ljava/lang/Object; // [email protected]
Reads [email protected] (entry #CH in the field id table) into v1.
63 sget-boolean vx,field_id Reads the boolean static field identified by the field_id into vx. 6300 0C00 - sget-boolean v0, Test2.sb:Z // [email protected]
Reads boolean [email protected] (entry #12 in the field id table) into v0.
64 sget-byte vx,field_id Reads the byte static field identified by the field_id into vx. 6400 0200 - sget-byte v0, Test3.bs1:B // [email protected]
Reads byte [email protected] (entry #2 in the field id table) into v0.
65 sget-char vx,field_id Reads the char static field identified by the field_id into vx. 6500 0700 - sget-char v0, Test3.cs1:C // [email protected]
Reads byte [email protected] (entry #7 in the field id table) into v0.
66 sget-short vx,field_id Reads the short static field identified by the field_id into vx. 6600 0B00 - sget-short v0, Test3.ss1:S // [email protected]
Reads short [email protected] (entry #BH in the field id table) into v0.
67 sput vx, field_id Puts vx into a static field. 6700 0100 - sput v0, Test2.i5:I // [email protected]
Stores v0 into [email protected] (entry #1 in the field id table).
68 sput-wide vx, field_id Puts vx and vx+1 into a static field. 6800 0500 - sput-wide v0, Test2.l1:J // [email protected]
Puts the long value in v0 and v1 into the [email protected] static field (entry #5 in the field id table).
69 sput-object vx,field_id Puts object reference in vx into a static field. 6900 0c00 - sput-object v0, Test3.os1:Ljava/lang/Object; // [email protected]
Puts the object reference value in v0 into the [email protected] static field (entry #CH in the field id table).
6A sput-boolean vx,field_id Puts boolean value in vx into a static field. 6A00 0300 - sput-boolean v0, Test3.bls1:Z // [email protected]
Puts the byte value in v0 into the [email protected] static field (entry #3 in the field id table).
6B sput-byte vx,field_id Puts byte value in vx into a static field. 6B00 0200 - sput-byte v0, Test3.bs1:B // [email protected]
Puts the byte value in v0 into the [email protected] static field (entry #2 in the field id table).
6C sput-char vx,field_id Puts char value in vx into a static field. 6C01 0700 - sput-char v1, Test3.cs1:C // [email protected]
Puts the char value in v1 into the [email protected] static field (entry #7 in the field id table).
6D sput-short vx,field_id Puts short value in vx into a static field. 6D00 0B00 - sput-short v0, Test3.ss1:S // [email protected]
Puts the short value in v0 into the [email protected] static field (entry #BH in the field id table).
6E invoke-virtual { parameters }, methodtocall Invokes a virtual method with parameters. 6E53 0600 0421 - invoke-virtual { v4, v0, v1, v2, v3}, Test2.method5:(IIII)V // [email protected]
Invokes the 6th method in the method table with the following arguments: v4 is the "this" instance, v0, v1, v2, and v3 are the method parameters. The method has 5 arguments (4 MSB bits of the second byte)5.
6F invoke-super {parameter},methodtocall Invokes the virtual method of the immediate parent class. 6F10 A601 0100 invoke-super {v1},java.io.FilterOutputStream.close:()V // [email protected]
Invokes [email protected] with one parameter, v1.
70 invoke-direct { parameters }, methodtocall Invokes a method with parameters without the virtual method resolution. 7010 0800 0100 - invoke-direct {v1}, java.lang.Object.<init>:()V // [email protected]
Invokes the 8th method in the method table with just one parameter, v1 is the "this" instance5.
71 invoke-static {parameters}, methodtocall Invokes a static method with parameters. 7110 3400 0400 - invoke-static {v4}, java.lang.Integer.parseInt:( Ljava/lang/String;)I // [email protected]
Invokes [email protected] static method. The method is called with one parameter, v45.
72 invoke-interface {parameters},methodtocall Invokes an interface method. 7240 2102 3154 invoke-interface {v1, v3, v4, v5}, mwfw.IReceivingProtocolAdapter.receivePackage:(
ILjava/lang/String;Ljava/io/InputStream;)Z // [email protected]
Invokes [email protected] interface method using parameters in v1,v3,v4 and v55.
73 unused_73    
74 invoke-virtual/range {vx..vy},methodtocall Invokes virtual method with a range of registers. The instruction specifies the first register and the number of registers to be passed to the method. 7403 0600 1300 - invoke-virtual {v19..v21}, Test2.method5:(IIII)V // [email protected]
Invokes the 6th method in the method table with the following arguments: v19 is the "this" instance, v20 and v21 are the method parameters. 
75 invoke-super/range Invokes  the virtual method of the immediate parent class. The instruction specifies the first register and the number of registers to be passed to the method. 7501 A601 0100 invoke-super {v1},java.io.FilterOutputStream.close:()V // [email protected]
Invokes [email protected] with one parameter, v1.
76 invoke-direct/range {vx..vy},methodtocall Invokes direct method with a range of registers. The instruction specifies the first register and the number of registers to be passed to the method. 7603 3A00 1300 - invoke-direct/range {v19..21},java.lang.Object.<init>:()V // [email protected]
Invokes [email protected] with 1 parameters (second byte of the instruction=03). The parameter is stored in v19 (5th,6th bytes of the instruction).
77 invoke-static/range {vx..vy},methodtocall Invokes static method with a range of registers. The instruction specifies the first register and the number of registers to be passed to the method. 7703 3A00 1300 - invoke-static/range {v19..21},java.lang.Integer.parseInt:( Ljava/lang/String;)I // [email protected]
Invokes [email protected] with 1 parameters (second byte of the instruction=03). The parameter is stored in v19 (5th,6th bytes of the instruction).
78 invoke-interface-range Invokes an interface method with a range of registers. The instruction specifies the first register and the number of registers to be passed to the method. 7840 2102 0100 invoke-interface {v1..v4}, mwfw.IReceivingProtocolAdapter.receivePackage:(
ILjava/lang/String;Ljava/io/InputStream;)Z // [email protected]
Invokes [email protected] interface method using parameters in v1..v4.
79 unused_79    
7A unused_7A    
7B neg-int vx,vy Calculates vx=-vy. 7B01 - neg-int v1,v0
Calculates -v0 and stores the result in v1.
7C not-int vx,vy    
7D neg-long vx,vy Calculates vx,vx+1=-(vy,vy+1)  7D02 - neg-long v2,v0
Calculates -(v0,v1) and stores the result into (v2,v3)
7E not-long vx,vy    
7F neg-float vx,vy Calculates vx=-vy 7F01 - neg-float v1,v0
Calculates -v0 and stores the result into v1.
80 neg-double vx,vy Calculates vx,vx+1=-(vy,vy+1) 8002 - neg-double v2,v0
Calculates -(v0,v1) and stores the result into (v2,v3)
81 int-to-long vx, vy Converts the integer in vy into a long in vx,vx+1. 8106 - int-to-long v6, v0
Converts an integer in v0 into a long in v6,v7.
82 int-to-float vx, vy Converts the integer in vx into a float in vx. 8206 - int-to-float v6, v0
Converts the integer in v0 into a float in v6.
83 int-to-double vx, vy Converts the integer in vy into the double in vx,vx+1. 8306 - int-to-double v6, v0
Converts the integer in v0 into a double in v6,v7
84 long-to-int vx,vy Converts the long value in vy,vy+1 into an integer in vx. 8424 - long-to-int v4, v2
Converts the long value in v2,v3 into an integer value in v4.
85 long-to-float vx, vy Converts the long value in vy,vy+1 into a float in vx. 8510 - long-to-float v0, v1
Convcerts the long value in v1,v2 into a float value in v0.
86 long-to-double vx, vy Converts the long value in vy,vy+1 into a double value in vx,vx+1. 8610 - long-to-double v0, v1
Converts the long value in v1,v2 into a double value in v0,v1.
87 float-to-int vx, vy Converts the float value in vy into an integer value in vx. 8730 - float-to-int v0, v3
Converts the float value in v3 into an integer value in v0.
88 float-to-long vx,vy Converts the float value in vy into a long value in vx. 8830 - float-to-long v0, v3
Converts the float value in v3 into a long value in v0,v1.
89 float-to-double vx, vy Converts the float value in vy into a double value in vx,vx+1. 8930 - float-to-double v0, v3
Converts the float value in v3 into a double value in v0,v1.
8A double-to-int vx, vy Converts the double value in vy,vy+1 into an integer value in vx. 8A40  - double-to-int v0, v4
Converts the double value in v4,v5 into an integer value in v0.
8B double-to-long vx, vy Converts the double value in vy,vy+1 into a long value in vx,vx+1. 8B40 - double-to-long v0, v4
Converts the double value in v4,v5 into a long value in v0,v1.
8C double-to-float vx, vy Converts the double value in vy,vy+1 into a float value in vx. 8C40 - double-to-float v0, v4
Converts the double value in v4,v5 into a float value in v0,v1.
8D int-to-byte vx,vy Converts the int value in vy to a byte value and stores it in vx. 8D00 - int-to-byte v0, v0
Converts the integer in v0 into a byte and puts the byte value into v0.
8E int-to-char vx,vy Converts the int value in vy to a char value and stores it in vx. 8E33  - int-to-char v3, v3
Converts the integer in v3 into a char and puts the char value into v3.
8F int-to-short vx,vy Converts the int value in vy to a short value and stores it in vx. 8F00 - int-to-short v0, v0
Converts the integer in v0 into a short and puts the short value into v3.
90 add-int vx,vy,vz Calculates vy+vz and puts the result into vx. 9000 0203 - add-int v0, v2, v3
Adds v3 to v2 and puts the result into v04.
91 sub-int vx,vy,vz Calculates vy-vz and puts the result into vx. 9100 0203 - sub-int v0, v2, v3
Subtracts v3 from v2 and puts the result into v0.
92 mul-int vx, vy, vz Multiplies vz with wy and puts the result int vx. 9200 0203 - mul-int v0,v2,v3
Multiplies v2 with w3 and puts the result into v0
93 div-int vx,vy,vz Divides vy with vz and puts the result into vx. 9303 0001 - div-int v3, v0, v1
Divides v0 with v1 and puts the result into v3.
94 rem-int vx,vy,vz Calculates vy % vz and puts the result into vx. 9400 0203 - rem-int v0, v2, v3
Calculates v3 % v2 and puts the result into v0.
95 and-int vx, vy, vz Calculates vy AND vz and puts the result into vx. 9503 0001 - and-int v3, v0, v1
Calculates v0 AND v1 and puts the result into v3.
96 or-int vx, vy, vz Calculates vy OR vz and puts the result into vx. 9603 0001 - or-int v3, v0, v1
Calculates v0 OR v1 and puts the result into v3.
97 xor-int vx, vy, vz Calculates vy XOR vz and puts the result into vx. 9703 0001 - xor-int v3, v0, v1
Calculates v0 XOR v1 and puts the result into v3.
98 shl-int vx, vy, vz Shift vy left by the positions specified by vz and store the result into vx. 9802 0001 - shl-int v2, v0, v1
Shift v0 left by the positions specified by v1 and store the result in v2.
99 shr-int vx, vy, vz Shift vy right by the positions specified by vz and store the result into vx. 9902 0001 - shr-int v2, v0, v1
Shift v0 right by the positions specified by v1 and store the result in v2.
9A ushr-int vx, vy, vz Unsigned shift right (>>>) vy by the positions specified by vz and store the result into vx. 9A02 0001 - ushr-int v2, v0, v1
Unsigned shift v0 right by the positions specified by v1 and store the result in v2.
9B add-long vx, vy, vz Adds vy to vz and puts the result into vx1. 9B00 0305 - add-long v0, v3, v5
The long value in v3,v4 is added to the value in v5,v6 and the result is stored in v0,v1.
9C sub-long vx,vy,vz Calculates vy-vz and puts the result into vx1. 9C00 0305 - sub-long v0, v3, v5
Subtracts the long value in v5,v6 from the long value in v3,v4 and puts the result into v0,v1.
9D mul-long vx,vy,vz Calculates vy*vz and puts the result into vx1. 9D00 0305 - mul-long v0, v3, v5
Multiplies the long value in v5,v6 with the long value in v3,v4 and puts the result into v0,v1.
9E div-long vx, vy, vz Calculates vy/vz and puts the result into vx1. 9E06 0002 - div-long v6, v0, v2
Divides the long value in v0,v1 with the long value in v2,v3 and pust the result into v6,v7.
9F rem-long vx,vy,vz Calculates vy % vz and puts the result into vx1. 9F06 0002 - rem-long v6, v0, v2
Calculates v0,v1 %  v2,v3 and puts the result into v6,v7.
A0 and-long vx, vy, vz Calculates the vy AND vz and puts the result into vx1. A006 0002 - and-long v6, v0, v2
Calculates v0,v1 AND v2,v3 and puts the result into v6,v7.
A1 or-long vx, vy, vz Calculates the vy OR vz and puts the result into vx1. A106 0002 - or-long v6, v0, v2
Calculates v0,v1 OR v2,v3 and puts the result into v6,v7.
A2 xor-long vx, vy, vz Calculates the vy XOR vz and puts the result into vx1. A206 0002 - xor-long v6, v0, v2
Calculates v0,v1 XOR v2,v3 and puts the result into v6,v7.
A3 shl-long vx, vy, vz Shifts left vy by vz positions and stores the result in vx1. A302 0004 - shl-long v2, v0, v4
Shift v0,v1 by postions specified by v4 and puts the result into v2,v3.
A4 shr-long vx,vy,vz Shifts right vy by vz positions and stores the result in vx1. A402 0004 - shr-long v2, v0, v4
Shift v0,v1 by postions specified by v4 and puts the result into v2,v3.
A5 ushr-long vx, vy, vz Unsigned shifts right vy by vz positions and stores the result in vx1. A502 0004 - ushr-long v2, v0, v4
Unsigned shift v0,v1 by postions specified by v4 and puts the result into v2,v3.
A6 add-float vx,vy,vz Adds vy to vz and puts the result into vx. A600 0203 - add-float v0, v2, v3
Adds the floating point numbers in v2 and v3 and puts the result into v0.
A7 sub-float vx,vy,vz Calculates vy-vz and puts the result into vx. A700 0203 - sub-float v0, v2, v3
Calculates v2-v3 and puts the result into v0.
A8 mul-float vx, vy, vz Multiplies vy with vz and puts the result into vx. A803 0001 - mul-float v3, v0, v1
Multiplies v0 with v1 and puts the result into v3.
A9 div-float vx, vy, vz Calculates vy/vz and puts the result into vx. A903 0001 - div-float v3, v0, v1
Divides v0 with v1 and puts the result into v3.
AA rem-float vx,vy,vz Calculates vy % vz and puts the result into vx. AA03 0001 - rem-float v3, v0, v1
Calculates v0 %  v1 and puts the result into v3.
AB add-double vx,vy,vz Adds vy to vz and puts the result into vx1 AB00 0305 - add-double v0, v3, v5
Adds the double value in v5,v6 registers to the double value in v3,v4 registers and places the result  in v0,v1 registers.
AC sub-double vx,vy,vz Calculates vy-vz and puts the result into vx1. AC00 0305 - sub-double v0, v3, v5
Subtracts the value in v5,v6 from the value in v3,v4 and puts the result into v0,v1.
AD mul-double vx, vy, vz Multiplies vy with vz and puts the result into vx1. AD06 0002 - mul-double v6, v0, v2
Multiplies the double value in v0,v1 with the double value in v2,v3 and puts the result into v6,v7.
AE div-double vx, vy, vz Calculates vy/vz and puts the result into vx1. AE06 0002 - div-double v6, v0, v2
Divides the double value in v0,v1 with the double value in v2,v3 and puts the result into v6,v7.
AF rem-double vx,vy,vz Calculates vy % vz and puts the result into vx1. AF06 0002 - rem-double v6, v0, v2
Calculates v0,v1 % v2,v3 and puts the result into v6,v7.
B0 add-int/2addr vx,vy Adds vy to vx. B010 - add-int/2addr v0,v1
Adds v1 to v0.
B1 sub-int/2addr vx,vy Calculates vx-vy and puts the result into vx. B140 - sub-int/2addr v0, v4
Subtracts v4 from v0 and puts the result into v0.
B2 mul-int/2addr vx,vy Multiplies vx with vy. B210 - mul-int/2addr v0, v1
Multiples v0 with v1 and puts the result into v0.
B3 div-int/2addr vx,vy Divides vx with vy and puts the result into vx. B310 - div-int/2addr v0, v1
Divides v0 with v1 and puts the result into v0.
B4 rem-int/2addr vx,vy Calculates vx % vy and puts the result into vx B410 - rem-int/2addr v0, v1
 Calculates v0 % v1 and puts the result into v0.
B5 and-int/2addr vx, vy Calculates vx AND vy and puts the result into vx. B510 - and-int/2addr v0, v1
Calculates v0 AND v1 and puts the result into v0.
B6 or-int/2addr vx, vy Calculates vx OR vy and puts the result into vx. B610 - or-int/2addr v0, v1
Calculates v0 OR v1 and puts the result into v0.
B7 xor-int/2addr vx, vy Calculates vx XOR vy and puts the result into vx. B710  - xor-int/2addr v0, v1
Calculates v0 XOR v1 and puts the result into v0.
B8 shl-int/2addr vx, vy Shifts vx left by vy positions. B810 - shl-int/2addr v0, v1
Shift v0 left by v1 positions.
B9 shr-int/2addr vx, vy Shifts vx right by vy positions. B910 - shr-int/2addr v0, v1
Shift v0 right by v1 positions.
BA ushr-int/2addr vx, vy Unsigned shift right (>>>) vx by the positions specified by vy. BA10 - ushr-int/2addr v0, v1
Unsigned shift v0 by the positions specified by v1.
BB add-long/2addr vx,vy Adds vy to vx1. BB20 - add-long/2addr v0, v2
Adds the long value in v2,v3 registers to the long value in v0,v1 registers.
BC sub-long/2addr vx,vy Calculates vx-vy and puts the result into vx1. BC70 - sub-long/2addr v0, v7
Subtracts the long value in v7,v8 from the long value in v0,v1 and puts the result into v0,v1.
BD mul-long/2addr vx,vy Calculates vx*vy and puts the result into vx1. BD70 - mul-long/2addr v0, v7
Multiplies the long value in v7,v8 with the long value in v0,v1 and puts the result into v0,v1.
BE div-long/2addr vx, vy Calculates vx/vy and puts the result into vx1. BE20 - div-long/2addr v0, v2
Divides the long value in v0,v1 with the long value in v2,v3 and puts the result into v0,v1
BF rem-long/2addr vx,vy Calculates vx % vy and puts the result into vx1. BF20 - rem-long/2addr v0, v2
Calculates v0,v1 % v2,v3 and puts the result into v0,v1
C0 and-long/2addr vx, vy Calculates vx AND vy and puts the result into vx1. C020 - and-long/2addr v0, v2
Calculates v0,v1 OR v2,v3 and puts the result into v0,v1.
C1 or-long/2addr vx, vy Calculates vx OR vy and puts the result into vx1. C120  - or-long/2addr v0, v2
Calculates v0,v1 OR v2,v3 and puts the result into v0,v1.
C2 xor-long/2addr vx, vy Calculates vx XOR vy and puts the result into vx1. C220 - xor-long/2addr v0, v2
Calculates v0,v1 XOR v2,v3 and puts the result into v0,v1.
C3 shl-long/2addr vx, vy Shifts left the value in vx,vx+1 by the positions specified by vy and stores the result in vx,vx+1. C320 - shl-long/2addr v0, v2
Shifts left v0,v1 by the positions specified by v2.
C4 shr-long/2addr vx, vy Shifts right the value in vx,vx+1 by the positions specified by vy and stores the result in vx,vx+1. C420 - shr-long/2addr v0, v2
Shifts right v0,v1 by the positions specified by v2.
C5 ushr-long/2addr vx, vy Unsigned shifts right the value in vx,vx+1 by the positions specified by vy and stores the result in vx,vx+1. C520 - ushr-long/2addr v0, v2
Unsigned shifts right v0,v1 by the positions specified by v2.
C6 add-float/2addr vx,vy Adds vy to vx.  C640 - add-float/2addr v0,v4
Adds v4 to v0.
C7 sub-float/2addr vx,vy Calculates vx-vy and stores the result in vx. C740 - sub-float/2addr v0,v4
Adds v4 to v0.
C8 mul-float/2addr vx, vy Multiplies vx with vy. C810 - mul-float/2addr v0, v1
Multiplies v0 with v1.
C9 div-float/2addr vx, vy Calculates vx/vy and puts the result into vx. C910 - div-float/2addr v0, v1
Divides v0 with v1 and puts the result into v0.
CA rem-float/2addr vx,vy Calculates vx/vy and puts the result into vx. CA10 - rem-float/2addr v0, v1
 Calculates v0 % v1 and puts the result into v0.
CB add-double/2addr vx, vy Adds vy to vx1. CB70 - add-double/2addr v0, v7
Adds v7 to v0.
CC sub-double/2addr vx, vy Calculates vx-vy and puts the result into vx1. CC70 - sub-double/2addr v0, v7
Subtracts the value in v7,v8 from the value in v0,v1 and puts the result into v0,v1.
CD mul-double/2addr vx, vy Multiplies vx with vy1. CD20 - mul-double/2addr v0, v2
Multiplies the double value in v0,v1 with the double value in v2,v3 and puts the result into v0,v1.
CE div-double/2addr vx, vy Calculates vx/vy and puts the result into vx1. CE20 - div-double/2addr v0, v2
Divides the double value in v0,v1 with the double value in v2,v3 and puts the value into v0,v1.
CF rem-double/2addr vx,vy Calculates vx % vy and puts the result into vx1. CF20 - rem-double/2addr v0, v2
 Calculates  v0,v1 %  v2,v3 and puts the value into v0,v1.
D0 add-int/lit16 vx,vy,lit16 Adds vy to lit16 and stores the result into vx. D001 D204 - add-int/lit16 v1, v0, #int 1234 // #04d2
Adds v0 to literal 1234 and stores the result into v1.
D1 sub-int/lit16 vx,vy,lit16 Calculates vy - lit16 and stores the result into vx. D101 D204 - sub-int/lit16 v1, v0, #int 1234 // #04d2
Calculates v0 - literal 1234 and stores the result into v1.
D2 mul-int/lit16 vx,vy,lit16 Calculates vy * lit16 and stores the result into vx. D201 D204 - mul-int/lit16 v1, v0, #int 1234 // #04d2
Calculates v0 * literal 1234 and stores the result into v1.
D3 div-int/lit16 vx,vy,lit16 Calculates vy / lit16 and stores the result into vx. D301 D204 - div-int/lit16 v1, v0, #int 1234 // #04d2
Calculates v0 / literal 1234 and stores the result into v1.
D4 rem-int/lit16 vx,vy,lit16 Calculates vy % lit16 and stores the result into vx. D401 D204 - rem-int/lit16 v1, v0, #int 1234 // #04d2
Calculates v0 % literal 1234 and stores the result into v1.
D5 and-int/lit16 vx,vy,lit16 Calculates vy AND lit16 and stores the result into vx. D501 D204 - and-int/lit16 v1, v0, #int 1234 // #04d2
Calculates v0 AND literal 1234 and stores the result into v1.
D6 or-int/lit16 vx,vy,lit16 Calculates vy OR lit16 and stores the result into vx. D601 D204 - or-int/lit16 v1, v0, #int 1234 // #04d2
Calculates v0 OR literal 1234 and stores the result into v1.
D7 xor-int/lit16 vx,vy,lit16 Calculates vy XOR lit16 and stores the result into vx. D701 D204 - xor-int/lit16 v1, v0, #int 1234 // #04d2
Calculates v0 XOR literal 1234 and stores the result into v1.
D8 add-int/lit8 vx,vy,lit8 Adds vy to lit8 and stores the result into vx. D800 0201 - add-int/lit8 v0,v2, #int1
Adds literal 1 to v2 and stores the result into v0.
D9 sub-int/lit8 vx,vy,lit8 Calculates vy-lit8 and stores the result into vx. D900 0201 - sub-int/lit8 v0,v2, #int1
Calculates v2-1 and stores the result into v0.
DA mul-int/lit-8 vx,vy,lit8 Multiplies vy with lit8 8-bit literal constant and puts the result into vx. DA00 0002 - mul-int/lit8 v0,v0, #int2
Multiplies v0 with literal 2 and puts the result into v0.
DB div-int/lit8 vx,vy,lit8 Calculates vy/lit8 and stores the result into vx. DB00 0203 - mul-int/lit8 v0,v2, #int3
Calculates v2/3 and stores the result into v0.
DC rem-int/lit8 vx,vy,lit8 Calculates vy % lit8 and stores the result into vx. DC00 0203 - rem-int/lit8 v0,v2, #int3
Calculates v2 % 3 and stores the result into v0.
DD and-int/lit8 vx,vy,lit8 Calculates vy AND lit8 and stores the result into vx. DD00 0203 - and-int/lit8 v0,v2, #int3
Calculates v2 AND 3 and stores the result into v0.
DE or-int/lit8 vx, vy, lit8 Calculates vy OR lit8 and puts the result into vx. DE00 0203 - or-int/lit8 v0, v2, #int 3
Calculates v2 OR literal 3 and puts the result into v0.
DF xor-int/lit8 vx, vy, lit8 Calculates vy XOR lit8 and puts the result into vx. DF00 0203     |  0008: xor-int/lit8 v0, v2, #int 3
Calculates v2 XOR literal 3 and puts the result into v0.
E0 shl-int/lit8 vx, vy, lit8 Shift v0 left by the bit positions specified by the literal constant and put the result into vx. E001 0001 - shl-int/lit8 v1, v0, #int 1
Shift v0 left by 1 position and put the result into v1.
E1 shr-int/lit8 vx, vy, lit8 Shift v0 right by the bit positions specified by the literal constant and put the result into vx. E101 0001 - shr-int/lit8 v1, v0, #int 1
Shift v0 right by 1 position and put the result into v1.
E2 ushr-int/lit8 vx, vy, lit8 Unsigned right shift of v0 (>>>) by the bit positions specified by the literal constant and put the result into vx. E201 0001 - ushr-int/lit8 v1, v0, #int 1
Unsigned shift v0 right by 1 position and put the result into v1.
E3 unused_E3    
E4 unused_E4    
E5 unused_E5    
E6 unused_E6    
E7 unused_E7    
E8 unused_E8    
E9 unused_E9    
EA unused_EA    
EB unused_EB    
EC unused_EC    
ED unused_ED    
EE execute-inline {parameters},inline ID Executes the inline method identified by inline ID6. EE20 0300 0100 - execute-inline {v1, v0}, inline #0003
Executes inline method #3 using v1 as "this" and passing one parameter in v0.
EF unused_EF    
F0 invoke-direct-empty Stands as a placeholder for pruned empty methods like Object.<init>. This acts as nop during normal execution6. F010 F608 0000 - invoke-direct-empty {v0}, Ljava/lang/Object;.<init>:()V // [email protected]
Replacement for the empty method java/lang/Object;<init>.
F1 unused_F1    
F2 iget-quick vx,vy,offset Gets the value stored at offset in vy instance‘s data area to vx6. F221 1000 - iget-quick v1, v2, [obj+0010]
Gets the value at offset 0CH of the instance pointed by v2 and stores the object reference in v1.
F3 iget-wide-quick vx,vy,offset Gets the object reference value stored at offset in vy instance‘s data area to vx,vx+16. F364 3001 - iget-wide-quick v4, v6, [obj+0130]
Gets the value at offset 130H of the instance pointed by v6 and stores the object reference in v4,v5.
F4 iget-object-quick vx,vy,offset Gets the object reference value stored at offset in vy instance‘s data area to vx6. F431 0C00 - iget-object-quick v1, v3, [obj+000c]
Gets the object reference value at offset 0CH of the instance pointed by v3 and stores the object reference in v1.
F5 iput-quick vx,vy,offset Puts the value stored in vx to offset in vy instance‘s data area6. F521 1000  - iput-quick v1, v2, [obj+0010]
Puts the object reference value in v1 to offset 10H of the instance pointed by v2.
F6 iput-wide-quick vx,vy,offset Puts the value stored in vx,vx+1 to offset in vy instance‘s data area6. F652 7001 - iput-wide-quick v2, v5, [obj+0170]
Puts the value in v2,v3 to offset 170H of the instance pointed by v5.
F7 iput-object-quick vx,vy,offset Puts the object reference value stored in vx to offset in vy instance‘s data area to vx6. F701 4C00 - iput-object-quick v1, v0, [obj+004c]
Puts the object reference value in v1 to offset 0CH of the instance pointed by v3.
F8 invoke-virtual-quick {parameters},vtable offset Invokes a virtual method using the vtable of the target object6. F820 B800 CF00 - invoke-virtual-quick {v15, v12}, vtable #00b8
Invokes a virtual method. The target object instance is pointed by v15 and vtable entry #B8 points to the method to be called. v12 is a parameter to the method call.
F9 invoke-virtual-quick/range {parameter range},vtable offset Invokes a virtual method using the vtable of the target object6 F906 1800 0000 - invoke-virtual-quick/range {v0..v5},vtable #0018
Invokes a method using the vtable of the instance pointed by v0. v1..v5 registers are parameters to the method call.
FA invoke-super-quick {parameters},vtable offset Invokes a virtual method in the target object‘s immediate parent class using the vtable of that parent class6. FA40 8100 3254  - invoke-super-quick {v2, v3, v4, v5}, vtable #0081
Invokes a method using the vtable of the immediate parent class of instance pointed by v2. v3, v4 and v5 registers are parameters to the method call.
FB invoke-super-quick/range {register range},vtable offset Invokes a virtual method in the target object‘s immediate parent class using the vtable of that parent class6. F906 1B00 0000 - invoke-super-quick/range {v0..v5}, vtable #001b
Invokes a method using the vtable of the immediate parent class of instance pointed by v0. v1..v5 registers are parameters to the method call.
FC unused_FC    
FD unused_FD    
FE unused_FE    
FF unused_FF    
时间: 2024-10-12 14:50:22

Smali 语法文档的相关文章

Markdown 语法文档

前言 Markdown 是一种轻量级标记语言,创始人为約翰?格魯伯(英语:John Gruber); 它允许人们 "使用易读易写的纯文本格式编写文档,然后转换成有效的 XHTML(或者 HTML)文档": 这种语言吸收了很多在 电子邮件中已有的纯文本标记的特性: -- 维基百科 Markdown 的部分标记有几种不同的符号,但是实现的效果都是相同的,所以文章中每种实现的效果我只写一种符号,一般都是方便且较常用的标记符号: 标题 # H1 ## H2 ### H3 #### H4 # 的

Android JNI初体验

开始接触Android JNI层面的内容,推荐一本不错的入门级的书<Android的设计与实现:卷一>,这两天看了一下关于Java层和Native层函数映射的章节,加深对JNI的理解. 先是写了一个非常简单的计算器,关键的运算放在Native层实现,然后把运算的结果返回到Java层,写这个的时候还是自己手动建jni文件夹,javah的命令行,写makefile文件,用ndk-build命令行来编译,后来发现要调试C代码了,才发现高版本的ndk环境已经全都集成好了,编译,运行,调试甚至和VS差不

H264中的SPS、PPS提取与作用

牛逼的视频会议网站:http://wmnmtm.blog.163.com/blog/#m=0 ++++++++++++++++++++++++++++++++++++++++++++++++++++ http://wmnmtm.blog.163.com/blog/static/38245714201192491746701/ 使用RTP传输H264的时候,需要用到sdp协议描述,其中有两项:Sequence Parameter Sets (SPS) 和Picture Parameter Set 

Jenkins的pipeline

说明 再官网文档上有说明pipeline的工作流程,具体可以参考pipeline文档和语法文档. 这里将pipeline的生命周期图贴出来  我们暂时不会用到完整的流程,只摘取有用的部分,完成最小的流程即可,下面是我举的几个实际例子 一般流程 node { dir('/home/share/node/falcon') { stage("git") { sh "git fetch origin" sh "git checkout -f origin/mast

微信小程序+OLAMI(欧拉蜜)自然语言API接口制作智能查询工具--快递、聊天、日历等

微信小程序最近比较热门,再加上自然语义理解也越来越被人关注,于是我想赶赶潮流,做一个小程序试试.想来想去快递查询应该是一种比较普遍的需求. 如果你也在通过自然语言接口做点什么,希望我的这篇博客能帮到你.我建了一个QQ群656580961,感兴趣的朋友可以加入互通有无.或者你也可以直接下载代码试一试. 用微信扫描下面的二维码可以直接测试小程序 也可以通过关注下面的公众号,点解工具使用小程序 ----------------功能介绍: 我的小程序名字叫"智能生活宝"------------

vue2/vuex2的那点坑

说是坑,其实大部分是我们自己的过错! vuex官方demo在1.0可以运行,在2.0报错?此类问题,应该很常见吧? 还有顺溜的利用1.0搭建的webpack编译环境到了vue2.0突然失效了,报错了?简直要疯啊 1.问题一 *Failed to load resource: net::ERR_FILE_NOT_FOUND *app.js:16381 Uncaught SyntaxError: Unexpected token import可能你会疑惑,webpack中明明写了 babel 加载器

H264中的SPS、PPS提取与作用&lt;转&gt;

牛逼的视频会议网站:http://wmnmtm.blog.163.com/blog/#m=0 ++++++++++++++++++++++++++++++++++++++++++++++++++++ http://wmnmtm.blog.163.com/blog/static/38245714201192491746701/ 使用RTP传输H264的时候,需要用到sdp协议描述,其中有两项:Sequence Parameter Sets (SPS) 和Picture Parameter Set 

jQuery中Ajax+Spring MVC实现跨域请求

项目开发中,某个可独立.也可集成的子业务模块须要向外开放相关API接口,先说下项目本身使用了jersery来实现RESTful webservice以名词形式公布API.有意思的是在实际的操作中同事却通过Ajax跨域请求的方式去调用该API,先不说成功与否,这样的方式本就是"滑稽"的.和他一起探讨了此种做法的不合理性,之后选择jersey client的方式进行远程调用.只是他在跨域请求中遇到了问题,自己闲暇时间予以解决,这才是此篇文章的由来. jQuery对跨域请求有两种解决方式各自

Ajax+Spring MVC实现跨域请求(JSONP)JSONP 跨域

JSONP原理及实现 接下来,来实际模拟一个跨域请求的解决方案.后端为Spring MVC架构的,前端则通过Ajax进行跨域访问. 1.首先客户端需要注册一个callback(服务端通过该callback(jsonp)可以得到js函数名(jsonpCallback)),然后以JavaScript语 法的方式,生成一个function 2.接下来,将JSON数据直接以入参的方式,放置到function中,这样就生成了一段js语法文档,返回给客户端. 3.最后客户端浏览器动态的解析script标签,