UVa 12712 && UVaLive 6653 Pattern Locker (排列组合)

题意:给定 一个n * n 的宫格,就是图案解锁,然后问你在区间 [l, r] 内的所有的个数进行组合,有多少种。

析:本来以为是数位DP,后来仔细一想是排列组合,因为怎么组合都行,不用考虑实际要考虑的比如 要连13,必须经过2,这个可以不用。

所以这题就是A(n,m)。剩下的就简单了。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10000 + 5;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;
}
LL sum[maxn];

int main(){
    int T;  cin >> T;
    for(int kase = 1; kase <= T; ++kase){
        int k;
        scanf("%d %d %d", &n, &m, &k);
        n = n * n;
        LL ans = 0;
        m = n - m + 1;  k = n - k + 1;

        sum[n] = n;
        for(int i = n-1; i >= 1; --i)  sum[i] = (sum[i+1] * i) % mod;
        for(int i = k; i <= m; ++i)  ans = (ans + sum[i]) % mod;

        printf("Case %d: %lld\n", kase, ans);
    }
    return 0;
}
时间: 2024-10-14 03:01:06

UVa 12712 && UVaLive 6653 Pattern Locker (排列组合)的相关文章

UVALive 6469 Deranged Exams (排列组合:绝逼是纯纯的高中知识啊)

题目意思是 : 给你一个n([1,17])表示有n个数据结构里的术语,然后n个对这些术语的定义,让你对这些术语和定义对号入座(相当于进行连线,A术语连A术语的定义).然后一个 k([0,n]),问你至少前k个术语定义对应错的总共有多少种. 起先我也不怎么会,忘完了,后来看别人的题解,可能我语文真的不怎么好,不是很能理解,然后问的别人...然后xxx给我说我有写个题解的必要了 so... 就是高中排列组合,至少前k个连错的方案总共有多少种,因为如果直接按照题意来,一般都很麻烦,所有就反正来,用[总

UVA 12712 Pattern Locker(简单排列组合数学题)

转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4450 不懂取模运算的请猛戳:http://baike.baidu.com/link?url=A86lTLorv-Mim9g6v8EW3mY98qLz10cot1UCt6TZNPDJyslVYS5Ya1K

UVA 12124 UVAlive 3971 Assemble(二分 + 贪心)

先从中找出性能最好的那个数, 在用钱比较少的去组合,能组出来就表明答案在mid的右边,反之在左边, #include<string.h> #include<map> #include<stdio.h> #include<iostream> #include<algorithm> using namespace std; map<string,int> vic;//以字符映射数字 int end,start; int num; int

HDU--5396(区间dp+排列组合)

做这道题的时候,想到会不会是dp,然后发现dp可做,但是一直被自己坑到死. 枚举最后合并的那个位置,然后对于加减号的,分成的前后两个部分都有不同的组合方法, (a1+a2........) +  (b1,b2.............)         对于每个a,被加b的个数的阶乘次 ,对于每个b,被加a的个数的阶乘次 减法同理 乘法特殊一点 (a1+a2........) *  (b1,b2.............)  乘法分配率,直接将两部分的总和相乘即可 想到这些还远远没有结束,因为最

排列组合

(常考)错位排列 有N封信和N个信封,每封信都不装在自己信封里的排列种数记作Dn,则 D1=0,D2=1,D3=2,D4=9,D5=44,D6=265 一.相邻问题---捆绑法 不邻问题---插空法 对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可. [例题1]一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4 [答案]A. [解析] 以下内容需要回复才能看

hdu 1799 (循环多少次?)(排列组合公式)

循环多少次? Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3051    Accepted Submission(s): 1117 Problem Description 我们知道,在编程中,我们时常需要考虑到时间复杂度,特别是对于循环的部分.例如, 如果代码中出现 for(i=1;i<=n;i++) OP ; 那么做了n次OP运算

排列组合问题

一.不同元素子集问题 78. Subsets Given a set of distinct integers, nums, return all possible subsets. 给定一组非重复数字,求出所有可能的子集 解析: 例如 [1,2,3],解法: 首先放[],然后往已有的[]中放1 1. 首先放1 此时已有[ [], 1 ] 2. 然后对[ [], 1 ] 放2 于是此时有 [ [], [1], [2], [1,2] ] 3. 然后对[ [], [1], [2], [1,2] ]

排列组合问题之圆形分布

1.问题1.1 团团坐有一张圆桌,坐了A,B,C,D四个人,已知,D在A的右边,C在D的对面,请问A,B,C,D,的坐次? 解答:这个问题相对简单,我们纸上画一画,就能画出他们的可能的位置了 但是,可能还有一种解,比如我们把A,B,C,D依次右转一个位,也是满足条件的,而且只要保持他们的相对位置不变,依次右转n个位都是问题的解,而且还有个有趣的事情,当他们转了一圈(即右转4个位)后,他们右回到原位了 2.圆形分布上面这个问题就是一种圆形分布,那么他和直线分布的区别在哪里呢?又有什么联系呢?上面文

【noi 2.6_9288】&amp;【hdu 1133】Buy the Ticket(DP / 排列组合 Catalan+高精度)

题意:有m个人有一张50元的纸币,n个人有一张100元的纸币.他们要在一个原始存金为0元的售票处买一张50元的票,问一共有几种方案数. 解法:(学习了他人的推导后~) 1.Catalan数的应用7的变形.(推荐阅读:http://www.cnblogs.com/chenhuan001/p/5157133.html).P.S.不知我之前自己推出的公式“C(n,m)*C(2*m,m)/(m+1)*P(n,n)*P(m,m)”是否是正确的. (1)在不考虑m人和n人本身组内的排列时,总方案数为C(m+