数学建模竞赛题目

建模意义

思考方法

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只研究数学而不管数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

数学模型一 般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方 式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就 是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验, 实验本身也是实际操作的一种理论替代。

应用数学模型

应用数学去 解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的 过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方 法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是 数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科 技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开 展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的 一个重要方面,许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程 相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改 变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力 为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应 用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机 地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学 过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数学素质,强调的是获取新知识的能力,是 解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计最优化图论、微分方程、计算方法、神经网络、层次分析法模糊数学, 数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充 分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软 件,如SpssLingoMapleMathematicaMatlab甚至排版软件等。

建模起源

西方情况

数学建模是在20世纪60和70年代进入一些西方国家大学的,中国的几所大学也在80年代初将数学建模引入课堂。经过20多年的发展,绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。

大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,中国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。[1]

中国情况

1992年由中国工业与应用数学学会组织举办了10个城市的大学生数学模型联赛,74所院校的314队参 加。教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年 一届。十几年来这项竞赛的规模以平均年增长25%以上的速度发展。

2009 年全国有33个省/市/自治区(包括香港和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)。[2]

数据集

数学建模涉及大量数据集,供相关研究人员用于测试并论证数学建模算法,例如:

1.2008全国研究生数学建模竞赛试题及数据

2. 2011高教社杯全国大学生数学建模竞赛题目

3. 可进行密度建模训练的iris数据集

4. Applied Bayesian Modelling Dataset(应用贝叶斯建模数据集)

5. Worksheets Data for Multilevel modelling(多层次建模的工作表格式数据)等

建模资料

国内教材

1. 数学建模算法与应用,司守奎、孙玺菁编著,国防工业出版社(2012).

2.数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版,2011年第四版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").

3.数学建模方法与案例,张万龙,等编著,国防工业出版社(2014).

4. 数学建模入门与提高,李汉龙,等编著,国防工业出版社(2013).

5数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).

6.数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991).

7.数学模型,单峰,朱丽梅,国防工业出版社(2011).

8.数学模型,陈义华编著,重庆大学出版社,(1995)

9.数学模型建模分析,蔡常丰编著,科学出版社,(1995).

10.数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996).

11.数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).

12.数学建模,沈继红施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).

13.数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).

14.数学模型方法,齐欢编著,华中理工大学出版社,(1996).

15.数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996).

16.数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997).

17. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社。

18.数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).

19.数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).

20.数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998).

21.经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编著,华南理工大学出版社,(1999).

22.数学模型讲义,雷功炎编,北京大学出版社(1999).

23.数学建模精品案例,朱道元编著,东南大学出版社,(1999),

24.问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).

25.数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社, (1999).

26、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京).

27.数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000).

28.数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).

29.数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).

竞赛参考书

l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998).

2.大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998).

3.数学建模教育与国际数学建模竞赛 《工科数学》专辑,叶其孝主编, 《工科数学》杂志社,1994).

4. 大学生数学建模竞赛指南,肖华勇主编,电子工业出版社(2015).

国外参考书

(中译本)

1、数学模型引论, E.A。Bender著,朱尧辰、徐伟宣译,科学普及出版社(1982).

2.数学模型,[门]近藤次郎著,官荣章等译,机械工业出版社,(1985).

3.微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等 译,国防科技大学出版社,(1988).

4.政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋 等译,国防科技大学出版社,(1996).

5.离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智 等译,国防科技大学出版社,(1996).

6.生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等 译,国防科技大学出版社,(1996).

7.模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow 著,萧礼、张志军编译,科学出版社,(1996).

8.数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等著,叶其孝、吴庆宝译,世界图书出版公司,(1997)

专业性参考书

(这方面书籍很多,仅列几本供参考) :

1.水环境数学模型,[德]W.KinZE1bach著,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987).

2.科技工程中的数学模型,堪安琦编著,铁道出版社(1988)

3.生物医学数学模型,青义学编著,湖南科学技术出版杜(1990).

4.农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990).

5.系统科学中数学模型,欧阳亮编著, 山东大学出版社,(1995).

6.种群生态学的数学建模与研究,马知恩著,安徽教育出版社,(1996)

7.建模、变换、优化--结构综合方法新进展,隋允康著,大连理工大学出版社, (1986)

8.遗传模型分析方法,朱军著,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)

建模题目编辑

两项题

1992年

(A) 施肥效果分析问题(北京理工大学:叶其孝)

(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)

1993年

(A) 非线性交调的频率设计问题(北京大学:谢衷洁)

(B) 足球排名次问题(清华大学:蔡大用)

1994年

(A) 逢山开路问题(西安电子科技大学:何大可)

(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)

1995年

(A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)

(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)

1996年

(A) 最优捕鱼策略问题(北京师范大学:刘来福)

(B) 节水洗衣机问题(重庆大学:付鹂)

1997年

(A) 零件参数设计问题(清华大学:姜启源)

(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)

1998年

(A) 投资的收益和风险问题(浙江大学:陈淑平)

(B) 灾情巡视路线问题(上海海运学院:丁颂康)

四项题

1999年

(A) 自动化车床管理问题(北京大学:孙山泽)

(B) 钻井布局问题(郑州大学:林诒勋)

(C) 煤矸石堆积问题(太原理工大学:贾晓峰)

(D) 钻井布局问题(郑州大学:林诒勋)

2000年

(A) DNA序列分类问题(北京工业大学:孟大志)

(B) 钢管订购和运输问题(武汉大学:费甫生)

(C) 飞越北极问题(复旦大学:谭永基)

(D) 空洞探测问题(东北电力学院:关信)

2001年

(A) 血管的三维重建问题(浙江大学:汪国昭)

(B) 公交车调度问题(清华大学:谭泽光)

(C) 基金使用计划问题(东南大学:陈恩水

(D) 公交车调度问题(清华大学:谭泽光)

2002年

(A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)

(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)

(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)

(D) 赛程安排问题(清华大学:姜启源)

2003年

(A) SARS的传播问题(组委会)

(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)

(C) SARS的传播问题(组委会)

(D) 抢渡长江问题(华中农业大学:殷建肃)

2004年

(A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)

(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)

(C) 酒后开车问题(清华大学:姜启源)

(D) 招聘公务员问题(解放军信息工程大学:韩中庚)

2005年

(A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)

(B) DVD在线租赁问题(清华大学:谢金星等)

(C) 雨量预报方法的评价问题(复旦大学:谭永基)

(D) DVD在线租赁问题(清华大学:谢金星等)

2006年

(A) 出版社的资源配置问题(北京工业大学:孟大志)

(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)

(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)

(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)

2007年

(A) 中国人口增长预测

(B) 乘公交,看奥运

(C) 手机“套餐”优惠几何

(D) 体能测试时间安排

2008年

(A)数码相机定位,

(B)高等教育学费标准探讨,

(C)地面搜索,

(D)NBA赛程的分析与评价

2009年

(A)制动器试验台的控制方法分析

(B)眼科病床的合理安排

(C)卫星和飞船的跟踪测控

(D)会议筹备

2010年

(A)储油罐的变位识别与罐容表标定

(B)2010年上海世博会影响力的定量评估

(C)输油管的布置

(D)对学生宿舍设计方案的评价

2011年

(A)城市表层土壤重金属污染分析

(B)交巡警服务平台的设置与调度

(C)企业退休职工养老金制度的改革

(D)天然肠衣搭配问题

2012年

(A)葡萄酒的评价

(B)太阳能小屋的设计

(C)脑卒中发病环境因素分析及干预

(D)机器人避障问题

2013年

(A)车道被占用对城市道路通行能力的影响

(B)碎纸片的拼接复原

(C)古塔的变型

(D)公共自行车服务系统

2014年

(A)嫦娥三号软着陆轨道设计与控制策略

(B)创意平板折叠桌

(C)生猪养殖场的经营管理

(D)储药柜的设计

建模好处

1. 培养创新意识和创造能力

2.训练快速获取信息和资料的能力

3.锻炼快速了解和掌握新知识的技能

4.培养团队合作意识和团队合作精神

5.增强写作技能和排版技术

6.荣获国家级奖励有利于保送研究生

7.荣获国际级奖励有利于申请出国留学

8.更重要的是训练人的逻辑思维和开放性思考方式

时间: 2024-11-02 23:28:52

数学建模竞赛题目的相关文章

数学建模竞赛“爱你不容易,爱你不后悔”

2011年6月份高中毕业,就读本科,2013年暑假8月份,参加学校为期一个月的数学建模培训,然后9月份的第二个周末在东南大学参加为期三天的全国大学生数学建模竞赛,"意外"获得全国大学生数学建模竞赛二等奖:2015年6月份本科毕业,攻读硕士研究生,2016年暑假,因实习没有参加学校组织的数学建模培训,9月份的第三个周末在南京邮电大学参加为期4.5天的全国研究生数学建模竞赛,"如愿"获得全国研究生数学建模竞赛一等奖,随后在重庆大学参加"华为杯"第十三

2015 数学建模竞赛 入门与提高 读书笔记

<数学建模竞赛入门与提高> 第1章:数学建模概述 近半个多世纪以来,数学已经走进了各大领域,而与其他学科相结合形成交叉学科,首要的关键一步就是建立研究对象的数学模型,并加以计算求解,数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼. 1.1  初入门径--认识数学模型与数学建模 数学建模就是用数学语言描述实际现象的过程,这里的实际现象包含具体的自然现象,也包含抽象的比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释评价实际现象等内容. 数

第十五届中国研究生数学建模竞赛之机场登机口调度

第十五届中国研究生数学建模竞赛之机场登机口调度 1.问题描述 具体题目文件见:https://github.com/luoshui3000/Airport_gate_scheduling 问题一:本题只考虑航班-登机口分配.作为分析新建卫星厅对航班影响问题的第一步,首先要建立数学优化模型,尽可能多地分配航班到合适的登机口,并且在此基础上最小化被使用登机口的数量.本问题不需要考虑中转旅客的换乘,但要求把建立的数学模型进行编程,求最优解. 2.使用方法 我们根据登机口和航班的宽窄机和航线性质,将所有

华为杯第16届中国研究生数学建模竞赛参赛感想

数模竞赛参赛感悟    我和鲍可爱俩人完成了(我感觉三个人做的话,名次可能会高一点呢),并且提交了.感动    这次的数模竞赛,我选择的是E题,一道经典的文科题目,研究的主题是:用简单的模型说明白,全球气候变暖与局部地区变冷的关系.这个题是一道典型的数据分析题,用一些时间序列模型基本就差不多了,这道题的麻烦点是,数据太难找了,而且给的很多,我的数据处理的功底不到家的,这个以后我慢慢积累吧.. 数学建模依我而言就是写出来一篇论文,论文结构完整的话,能拿个国三(或者说,参加了就有国三,谁知道呢..=

数学建模竞赛(国赛和美赛)经验分享

建模的经历 第一次参赛是在大一的暑假参加的国赛,当时和两个同学刚刚组队,我们也没有什么基础,结果可想而知:无奖.在经历了这一次国赛之后,大一时的两位队友也无心再参加,所以又重新找了两位队友.从此我们队伍成员便确认了下来.这两位分别是一名女生负责排版,一名男生负责建模:而我负责写程序.我们一起准备第二年的国赛,在这期间,我们学校决定自己组织一次建模比赛为国赛做铺垫.我们为了检验自己的学习成果,便参加了.凭借着很好的运气,我们拿了二等奖的好成绩.时间不久,便到了国赛.在国赛期间,我们每天熬夜熬到很晚

2019美国大学生数学建模竞赛B题(思路)

建模比赛已经过去三天了,但留校的十多天里,自己的收获与感受依然长存于心.下面的大致流程,很多并没有细化,下面很多情况都是在假设下进行的,比如假设飞机能够来回运送药品,运货无人机就只运货,在最大视距下侦查等. 题目下载:点击下载 首先,因为这道题中的变量太多,我们需要对变量的数量进行减小. 一.变量设置 二.约束条件 1.从基地运输到医院的药包量必须满足医院的需求. 2.无人机最大行驶距离能否满足来回医院. 三.目标函数 1.计算基地到医院的时间: 2.我们希望时间最优(最短),则取满足约束条件b

如何入门参加数学建模竞赛

1 网上资源 1.1 数学中国 可以去数学中国网站看看,在数学建模比赛的培训这一块做得很好的机构,如果自己有点银子,可以去参加他们的网上课程.另外他们有专门的数学建模群,群里面有很好关于数学建模的资料.而且这个机构自己也举办数学建模比赛,如果有时候可以在这里组队,直接参加比赛,累积一些经验,增长见识. 1.2 数学建模视频课程,现在网络上有一些比较好的关于数学建模比赛的视频资源,可以谷歌一下 1.3 网络上的一些关于数学建模的电子书,有时候你也不知道哪本书比较适合你,所以你可以先在网上找一些电子

2018年美国大学生数学建模竞赛(MCM/ICM) 比赛心得

话不多说,题目先上: 这是我们这次选择的题目,说说建模的那些事! 美赛的时间和国赛挑战杯时间略有不同,貌似多的一天是为了让我们对文章进行一个翻译吧QAQ 建议参加美赛的同学可以参照此计划进行 Day0--------------------------------------------------------- 想着明天就要比赛了,原本两个月前我和队友就计划着在学校一起比赛来着,后来听说学校出事故了,再后来不让留校,也许是单纯针对我们学院而言吧QAQ,然后比赛前一个月,我想到了一个法子,想让他

2018年美国大学生数学建模竞赛(MCM/ICM) B题解题思路

老套路,把我们在解决B题时候采用的思路分享给大家,希望大家能学到点东西~~~ B题思路整理:Part1:先整理出说某种语言多的十个国家给找出来,或者说是把十种语言对应的国家找出来 然后再对各个国家的人口进行求和,我们大概可以估计出说某种语言的人口数 再去描述一下该说语言的人口数是如何变换的(参考世界人口数据1960-2016) 再去参考全球移民数据 再利用arcmap工具描绘人口迁徙的路线,可以对人口进行一些预测 Part2:该问属于选址优化类问题,必然会有很多影响因素,比如公司选择的地址和国家