UVA 796 - Critical Links【求桥】

link:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737

题意:

求桥的数目及边,要求输出边的点的次序由小到大

代码:

#include <stdio.h>
#include <ctime>
#include <math.h>
#include <limits.h>
#include <complex>
#include <string>
#include <functional>
#include <iterator>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <list>
#include <bitset>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <iostream>
#include <ctime>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <time.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
#pragma comment (linker, "/STACK:102400000,102400000")

using namespace std;

int n, m, x, y;

const int MAXN = 1001000;
const int MAXM = 1000100;

int num;
char tmp;
vector<pair<int, int> > a;

struct Edge
{
    int to, next;
    bool cut;//是否为桥的标记
}edge[MAXM];
int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN];
int Index, top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];//删除一个点后增加的连通块
int bridge;

void addedge(int u, int v)
{
    edge[tot].to = v; edge[tot].next = head[u]; edge[tot].cut = false;
    head[u] = tot++;
}

void Tarjan(int u, int pre)
{
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    int son = 0;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        v = edge[i].to;
        if (v == pre)continue;
        if (!DFN[v])
        {
            son++;
            Tarjan(v, u);
            if (Low[u] > Low[v])Low[u] = Low[v];
            //桥
            //一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
            if (Low[v] > DFN[u])
            {
                bridge++;
                edge[i].cut = true;
                edge[i ^ 1].cut = true;
                a.push_back(make_pair(min(u, v), max(u, v)));
            }
            //割点
            //一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。
            //(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,
            //即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)
            if (u != pre && Low[v] >= DFN[u])//不是树根
            {
                cut[u] = true;
                add_block[u]++;
            }
        }
        else if (Low[u] > DFN[v])
            Low[u] = DFN[v];
    }
    //树根,分支数大于1
    if (u == pre && son > 1)cut[u] = true;
    if (u == pre)add_block[u] = son - 1;
    Instack[u] = false;
    top--;
}

void solve(int N)
{
    memset(DFN, 0, sizeof(DFN));
    memset(Instack, false, sizeof(Instack));
    memset(add_block, 0, sizeof(add_block));
    memset(cut, false, sizeof(cut));
    Index = top = 0;
    bridge = 0;
    for (int i = 1; i <= N; i++)
        if (!DFN[i])
            Tarjan(i, i);
    sort(a.begin(), a.end());
    printf("%d critical links\n", bridge);
    for (int i = 0; i < a.size(); i++)
        printf("%d - %d\n", a[i].first - 1, a[i].second - 1);
    printf("\n");
}

void init()
{
    tot = 0;
    num = 0;
    a.clear();
    memset(head, -1, sizeof(head));
}

int main()
{
    while (~scanf("%d", &n))
    {
        init();
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &m);
            m += 1;
            getchar();
            scanf("%c", &tmp);
            scanf("%d",&x);
            scanf("%c", &tmp);
            while (x--)
            {
                scanf("%d", &y);
                y += 1;
                addedge(m, y);
                addedge(y, m);
            }
        }
        solve(n);
    }
    return 0;
}

版权声明:转载请注明出处。

时间: 2024-09-29 04:05:25

UVA 796 - Critical Links【求桥】的相关文章

Light OJ 1026 Critical Links 求桥

题目 Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be in non-descending order. The solution set must not contain duplicate subsets. For example, If S = [1,2,3], a solution is: [ [3], [1], [2], [1,2,3]

UVA 796 Critical Links(无向图求桥)

题目来源: UVa Online Judgehttps://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737 求一个连通图中必不可少的路径: #include<stdio.h> #include<algorithm> #include<vector> #include<string.h> #define

UVA 796 - Critical Links (求桥按序输出)

tanjar求图中的桥,然后排序输出. 代码: #include<iostream> #include<cstdio> #include<string> #include<cmath> #include<queue> #include<stack> #include<map> #include<cstring> #include<algorithm> #define rep(i,a,b) for(i

UVA 796 Critical Links —— (求割边(桥))

和求割点类似,只要把>=改成>即可.这里想解释一下的是,无向图没有重边,怎么可以使得low[v]=dfn[u]呢?只要它们之间再来一个点即可. 总感觉图论要很仔细地想啊- -一不小心就弄混了.. 另外从这题发现,代码还是写成模块化比较好,比如solve一个函数,init一个函数等等,这样可以避免很多东西忘记写,比方说dfn或者G的清空等等.. 代码如下: 1 #include <stdio.h> 2 #include <stack> 3 #include <alg

UVA 796 Critical Links

#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> #include <cstdlib> #include <limits> #include <queue> #include <stack> #include <vector> #include &l

[UVA796]Critical Links(割边, 桥)

题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737 求桥的数量,也就是割边的数量.输入有点小坑,左右括号外必须得有个空格才行,起初以为是转义的问题. 1 /* 2 ━━━━━┒ギリギリ♂ eye! 3 ┓┏┓┏┓┃キリキリ♂ mind! 4 ┛┗┛┗┛┃\○/ 5 ┓┏┓┏┓┃ / 6 ┛┗┛┗┛┃ノ) 7 ┓┏┓┏┓┃ 8

C - Critical Links - uva 796(求桥)

题意:有一些网络通过一些线路连接,求关键的连接,也就是桥,如果删除这个链接那么会产生两个子树 分析:注意一下图不是连通图即可 ******************************************************************* #include<stdio.h>#include<string.h>#include<stack>#include<algorithm>using namespace std; const int 

Uva 796 求桥

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737 /*** Uva 796 求桥 题目要求:输出题目中所有的桥,按其所连接的点从小到大的顺序输出 解题思路:tarjan算法,所有树枝边都是桥(dfn[u]<low[v]),利用vector存储一下就可以了 */ #include <stdio.h> #include &

UVA796 - Critical Links(Tarjan求桥)

In a computer network a link L, which interconnects two servers, is considered critical if there are atleast two servers A and B such that all network interconnection paths between A and B pass through L.Removing a critical link generates two disjoin