UVa 1393 (容斥原理、GCD) Highways

题意:

给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点。

分析:

首先说紫书上的思路,编程较简单且容易理解。由于对称性,所以只统计“\”这种线型的,最后乘2即是答案。

枚举斜线包围盒的大小,如果盒子的长宽ab互质,则是可以的。这种盒子共有(m-a)(n-b)个,但要减去其中重复的。如果有一个长宽为2a和2b的大盒子,则计数右下角的小盒子的同时,左上角的小盒子会重复,所以要减去重复的盒子的个数c = max(0, m-2a) * max(0, n-2b)

最后gcd(a, b)的值是要预处理的

 1 #include <cstdio>
 2 #include <algorithm>
 3
 4 const int maxn = 300;
 5 int gcd[maxn+10][maxn+10];
 6
 7 int GCD(int a, int b)
 8 {
 9     return b == 0 ? a : GCD(b, a%b);
10 }
11
12 int main()
13 {
14     for(int i = 1; i <= maxn; ++i)
15         for(int j = 1; j <= i; ++j)
16             gcd[i][j] = gcd[j][i] = GCD(i, j);
17
18     int n, m;
19     while(scanf("%d%d", &n, &m) == 2 && n)
20     {
21         int ans = 0;
22         for(int a = 1; a <= n; ++a)
23             for(int b = 1; b <= m; ++b)
24                 if(gcd[a][b] == 1)
25                 {
26                     int c = std::max(0, n-a*2) * std::max(0, m-b*2);
27                     ans += (n-a)*(m-b) - c;
28                 }
29
30         printf("%d\n", ans * 2);
31     }
32
33     return 0;
34 }

代码君

解法二:

解法转自UVA 1393 - Highways (容斥原理计数)

dp(i, j)表示在长宽为ij的盒子中,从左上角最多能连多少条不重复的直线。

可以根据容斥原理递推dp(i, j) = dp(i-1, j) + dp(i, j-1) - dp(i-1, j-1) + (gcd(i, j) = 1) (因为盒子两边长互质的时候,才能连出一条新边出来)

最后答案ans递推的形式也是一样的,但重复的连线是那些缩小两倍后仍存在的直线

ans(i, j) = ans(i-1, j) + ans(i, j-1) - ans(i-1, j-1) + dp(i, j) - dp(i/2, j/2)

最后代码中,本想着只计算一半答案会快一点,结果排名21,登榜失败。

 1 #include <cstdio>
 2 #include <algorithm>
 3
 4 const int maxn = 300;
 5 int dp[maxn+1][maxn+1], ans[maxn+1][maxn+1];
 6
 7 int gcd(int a, int b)
 8 {
 9     return b == 0 ? a : gcd(b, a%b);
10 }
11
12 void Init()
13 {
14     for(int i = 1; i <= maxn; ++i)
15         for(int j = 1; j <= i; ++j)
16         {
17             if(i == j) dp[i][j] = dp[i][j-1] * 2 - dp[i-1][j-1] + (gcd(i, j) == 1);
18             else dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + (gcd(i, j) == 1);
19         }
20
21     for(int i = 1; i <= maxn; ++i)
22         for(int j = 1; j <= i; ++j)
23         {
24             if(i == j) ans[i][j] = ans[i][j-1] * 2 - ans[i-1][j-1] + dp[i][j] - dp[i/2][j/2];
25             else ans[i][j] = ans[i][j-1] + ans[i-1][j] - ans[i-1][j-1] + dp[i][j] - dp[i/2][j/2];
26         }
27 }
28
29 int main()
30 {
31     Init();
32     int n, m;
33     while(scanf("%d%d", &n, &m) == 2 && n)
34     {
35         if(n < m) std::swap(n, m);
36         printf("%d\n", ans[n-1][m-1]*2);
37     }
38
39     return 0;
40 }

代码君

时间: 2024-11-05 04:00:15

UVa 1393 (容斥原理、GCD) Highways的相关文章

uva 1393 - Highways(容斥原理)

题目连接:uva 1393 - Highways 题目大意:给定一个m?n的矩阵,将矩阵上的点两两相连,问有多少条直线至少经过两点. 解题思路:头一次做这样的题目,卡了一晚上. dp[i][j]即为i?j的矩阵中有多少条红色的线,然后最后答案*2,即水平翻转下蓝色的线.非常easy发现,全部的线都过ij互质的点(即最大公约数为1).然后用容斥原理求出ans. #include <cstdio> #include <cstring> const int N = 305; int n,

UVA 1393 - Highways (容斥原理计数)

题目链接:1393 - Highways 题意:给定一个n * m的点阵,问两两相连后,能组成多少条至少穿过两个点的直线,并且不是水平或垂直的 思路:找过两点的线段,由于是整数坐标,只要他的斜率不是整数,即x / y不是整数就能满足答案,然后先记录下这所有的位置,然后利用容斥原理求出对应每个点可以连出多少条这样的线段,最后去求和,求和的时候要注意,由于有一些是重复计算了,比如1 1 和 2 2 连,2 2 和 3 3 连,这样其实是算一条的,所以最后在求和的时候要扣掉重复的部分,直接减去sum[

UVA - 1393 Highways

Description Hackerland is a happy democratic country with m×n cities, arranged in a rectangular m by n grid and connected by m roads in the east-west direction and n roads in the north-south direction. By public demand, this orthogonal road system is

UVA 10951 - Polynomial GCD(数论)

UVA 10951 - Polynomial GCD 题目链接 题意:给定两个多项式,求多项式的gcd,要求首项次数为1,多项式中的运算都%n,并且n为素数. 思路:和gcd基本一样,只不过传入的是两个多项式,由于有%n这个条件,所以计算过程可以用乘法逆去计算除法模,然后最后输出的时候每项除掉首项的次数就是答案了. 代码: #include <stdio.h> #include <string.h> #include <vector> using namespace s

uva 10951 - Polynomial GCD(欧几里得)

题目链接:uva 10951 - Polynomial GCD 题目大意:给出n和两个多项式,求两个多项式在所有操作均模n的情况下最大公约数是多少. 解题思路:欧几里得算法,就是为多项式这个数据类型重载取模运算符,需要注意的是在多项式除多项的过程中,为了保证各项系数为整数,需要将整个多项式的系数整体扩大至一定倍数,碰到先除后模的时候要用逆元. #include <cstdio> #include <cstring> const int maxn = 105; int M; void

UVA 10951 Polynomial GCD 多项式欧几里德求最大公共多项式

今天作比赛遇上了HDU3892,都分析出来怎么做了,可惜不会求多项式的最大公共多项式,当时写了半天,案例也没有跑出来,赛后搜了一下题解,发现有大神做出了,而且是有模版的,不过又搜了一下关于这方面的题目,很少,只发现了这一道,所以先做一下这一道吧 题意,给你两个多项式,求他们的最大公共多项式,然后输出即可,无齿的套用了别人的模版,呵呵! #include<iostream> #include<cstdio> #include<list> #include<algor

UVA 1393 Highways(数学思想)

题意:给你n.m(n,m<=200),问你有多少条非水平.非垂直的直线有多少条经过至少两个点 题解:我们需要枚举的是只画一条线的矩形,对于大小a*b的矩形必须保证gcd(a,b)=1才能不重复 接着对于每个矩形可以放的位置有(n-a)(m-b)个,但是如果有矩形在某个矩形的左上方就会再次重复 因此只需要再减去max(0,n-2*a)*max(0,m-2*b)就好 import java.util.Scanner; public class Main{ static int Max=305; st

UVA 1393 Highways,UVA 12075 Counting Triangles —— (组合数,dp)

先看第一题,有n*m个点,求在这些点中,有多少条直线,经过了至少两点,且不是水平的也不是竖直的. 分析:由于对称性,我们只要求一个方向的线即可.该题分成两个过程,第一个过程是求出n*m的矩形中,dp[i][j]代表在这个矩形中终点是到(i,j)这个点的满足题意的直线条数,那么,用dp的话就可以得出递推关系:由长和宽分别小1的左右两个矩形中满足题意的线的条数减去他们共有的矩形中满足的线的条数(容斥减去重复部分),之后还要判断从最左上角的点(1,1)到(i,j)是否可以组成一条线,这个条件是gcd(

UVa 1393 Highways (动态规划)

题目 题目大意 有一个\(n\)行\(m\)列(\(1 ≤ n, m ≤ 300\))的点阵, 问: 一共有多少条非水平非竖直的直线至少穿过其中两个点? 例如, \(n = 2\), \(m = 4\)时答案为\(12\), \(n = m = 3\)时答案为\(14\). 题解 一开始看到题目我立马想到了\(SPOJ 104 Highways\)(基尔霍夫矩阵-树定理), 然而本题跟这个定理完全没有关系. 首先考虑如何判断是否形成一条之前没有出现过的直线, 如果它向量两坐标的最大公约数为\(1