kafka的log存储解析——topic的分区partition分段segment以及索引

转自:http://www.cnblogs.com/dorothychai/p/6181058.html

引言

Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互独立的。每个topic又可以分成几个不同的partition(每个topic有几个partition是在创建topic时指定的),每个partition存储一部分Message。借用官方的一张图,可以直观地看到topic和partition的关系。

partition是以文件的形式存储在文件系统中,比如,创建了一个名为page_visits的topic,其有5个partition,那么在Kafka的数据目录中(由配置文件中的log.dirs指定的)中就有这样5个目录: page_visits-0, page_visits-1,page_visits-2,page_visits-3,page_visits-4,其命名规则为<topic_name>-<partition_id>,里面存储的分别就是这5个partition的数据。

接下来,本文将分析partition目录中的文件的存储格式和相关的代码所在的位置。

Partition的数据文件

Partition中的每条Message由offset来表示它在这个partition中的偏移量,这个offset不是该Message在partition数据文件中的实际存储位置,而是逻辑上一个值,它唯一确定了partition中的一条Message。因此,可以认为offset是partition中Message的id。partition中的每条Message包含了以下三个属性:

  • offset
  • MessageSize
  • data

其中offset为long型,MessageSize为int32,表示data有多大,data为message的具体内容。它的格式和Kafka通讯协议中介绍的MessageSet格式是一致。

Partition的数据文件则包含了若干条上述格式的Message,按offset由小到大排列在一起。它的实现类为FileMessageSet,类图如下:

它的主要方法如下:

  • append: 把给定的ByteBufferMessageSet中的Message写入到这个数据文件中。
  • searchFor: 从指定的startingPosition开始搜索找到第一个Message其offset是大于或者等于指定的offset,并返回其在文件中的位置Position。它的实现方式是从startingPosition开始读取12个字节,分别是当前MessageSet的offset和size。如果当前offset小于指定的offset,那么将position向后移动LogOverHead+MessageSize(其中LogOverHead为offset+messagesize,为12个字节)。
  • read:准确名字应该是slice,它截取其中一部分返回一个新的FileMessageSet。它不保证截取的位置数据的完整性。
  • sizeInBytes: 表示这个FileMessageSet占有了多少字节的空间。
  • truncateTo: 把这个文件截断,这个方法不保证截断位置的Message的完整性。
  • readInto: 从指定的相对位置开始把文件的内容读取到对应的ByteBuffer中。

我们来思考一下,如果一个partition只有一个数据文件会怎么样?

  1. 新数据是添加在文件末尾(调用FileMessageSet的append方法),不论文件数据文件有多大,这个操作永远都是O(1)的。
  2. 查找某个offset的Message(调用FileMessageSet的searchFor方法)是顺序查找的。因此,如果数据文件很大的话,查找的效率就低。

那Kafka是如何解决查找效率的的问题呢?有两大法宝:1) 分段 2) 索引。

数据文件的分段

Kafka解决查询效率的手段之一是将数据文件分段,比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件里面,数据文件以该段中最小的offset命名。这样在查找指定offset的Message的时候,用二分查找就可以定位到该Message在哪个段中。

为数据文件建索引

数据文件分段使得可以在一个较小的数据文件中查找对应offset的Message了,但是这依然需要顺序扫描才能找到对应offset的Message。为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。
索引文件中包含若干个索引条目,每个条目表示数据文件中一条Message的索引。索引包含两个部分(均为4个字节的数字),分别为相对offset和position。

  • 相对offset:因为数据文件分段以后,每个数据文件的起始offset不为0,相对offset表示这条Message相对于其所属数据文件中最小的offset的大小。举例,分段后的一个数据文件的offset是从20开始,那么offset为25的Message在index文件中的相对offset就是25-20 = 5。存储相对offset可以减小索引文件占用的空间。
  • position,表示该条Message在数据文件中的绝对位置。只要打开文件并移动文件指针到这个position就可以读取对应的Message了。

index文件中并没有为数据文件中的每条Message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保留在内存中。但缺点是没有建立索引的Message也不能一次定位到其在数据文件的位置,从而需要做一次顺序扫描,但是这次顺序扫描的范围就很小了。

在Kafka中,索引文件的实现类为OffsetIndex,它的类图如下:

主要的方法有:

  • append方法,添加一对offset和position到index文件中,这里的offset将会被转成相对的offset。
  • lookup, 用二分查找的方式去查找小于或等于给定offset的最大的那个offset

小结

我们以几张图来总结一下Message是如何在Kafka中存储的,以及如何查找指定offset的Message的。

Message是按照topic来组织,每个topic可以分成多个的partition,比如:有5个partition的名为为page_visits的topic的目录结构为:

partition是分段的,每个段叫LogSegment,包括了一个数据文件和一个索引文件,下图是某个partition目录下的文件:

可以看到,这个partition有4个LogSegment。

借用博主@lizhitao博客上的一张图来展示是如何查找Message的。

比如:要查找绝对offset为7的Message:

  1. 首先是用二分查找确定它是在哪个LogSegment中,自然是在第一个Segment中。
  2. 打开这个Segment的index文件,也是用二分查找找到offset小于或者等于指定offset的索引条目中最大的那个offset。自然offset为6的那个索引是我们要找的,通过索引文件我们知道offset为6的Message在数据文件中的位置为9807。
  3. 打开数据文件,从位置为9807的那个地方开始顺序扫描直到找到offset为7的那条Message。

这套机制是建立在offset是有序的。索引文件被映射到内存中,所以查找的速度还是很快的。

一句话,Kafka的Message存储采用了分区(partition),分段(LogSegment)和稀疏索引这几个手段来达到了高效性。

时间: 2024-10-11 14:39:14

kafka的log存储解析——topic的分区partition分段segment以及索引的相关文章

Kafka的Log存储解析

引言 Kafka中的Message是以topic为基本单位组织的,不同的 topic之间是相互独立的.每个topic又可以分成几个不同的partition(每个topic有几个partition是在创建topic时指定 的),每个partition存储一部分Message.借用官方的一张图,可以直观地看到topic和partition的关系. partition是以文件的形式存储在文件系统中,比如,创建了一个名 为page_visits的topic,其有5个partition,那么在Kafka的

Kafka深入理解-2:Kafka的Log存储解析

摘自http://blog.csdn.net/jewes/article/details/42970799 引言 Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互独立的.每个topic又可以分成几个不同的partition(每个topic有几个partition是在创建topic时指定的),每个partition存储一部分Message.借用官方的一张图,可以直观地看到topic和partition的关系. partition是以文件的形式存储在文件系统中,

Kafka学习之一深度解析

背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能 高吞吐率.即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输 支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输 同时支持离线数据处理和实时数据处理 为什么要用消息系统 解耦在项目启动之初来预测将来项目会碰到什么需求,是极其困难的.消息队

Kafka消息文件存储

在对消息进行存储和缓存时,Kafka依赖于文件系统.(Page Cache) 线性读取和写入是所有使用模式中最具可预计性的一种方式,因而操作系统采用预读(read-ahead)和后写(write-behind)技术对磁盘读写进行探测并优化后效果也不错.预读就是提前将一个比较大的磁盘块中内容读入内存,后写是将一些较小的逻辑写入操作合并起来组成比较大的物理写入操作. 使用文件系统并依赖于页面缓存(Page Cache)要优于自己在内存中维护一个缓存或者什么别的结构. 通过对所有空闲内存自动拥有访问权

理解MySQL——并行数据库与分区(Partition)

理解MySQL--并行数据库与分区(Partition)(http://www.cnblogs.com/hustcat/archive/2009/12/24/1631674.html) 1.并行数据库 1.1.并行数据库的体系结构并行机的出现,催生了并行数据库的出现,不对,应该是关系运算本来就是高度可并行的.对数据库系统性能的度量主要有两种方式:(1)吞吐量(Throughput),在给定的时间段里所能完成的任务数量:(2)响应时间(Response time),单个任务从提交到完成所需要的时间

Oracle 表分区(Partition)

表分区功能能够改善应用程序性能,提高数据库可管理性和可用性,是数据库管理非常关键的技术.数据库通过使用分区提高查询性能,简化日常管理维护工作. 1 分区优点 1) 减少维护工作量,独立管理每个表分区比管理整个大表要轻松的多 2) 增加数据库的可用性,由于将数据分散到各个分区中,减少了数据损坏的可能性 3) 均衡I/O,减少竞争,通过把表的不同分区分配到不同的磁盘来平衡I/O改善性能 4) 分区对用户保持透明,用户感受不到它的存在 5) 提高查询速度,对于大表的DML操作可以分解到表的不同分区来执

Es+kafka搭建日志存储查询系统(设计)

现在使用的比较常用的日志分析系统有Splunk和Elk,Splunk功能齐全,处理能力强,但是是商用项目,而且收费高.Elk则是Splunk项目的一个开源实现,Elk是ElasticSearch(Es).Logstash.Kibana上个项目结合.Es就是基于Lucene的存储,索引的搜索引擎:logstash是提供输入输出及转化处理插件的日志标准化管道:Kibana提供可视化和查询统计的用户界面.往往这些开源项目并不是适合每一个公司的业务,业务不同,对开源项目扩展也就不同,logstash进行

文件系统与存储:MBR/EBR类型分区建立

1 linux启动的几个阶段: 对应关系 阶段1 阶段2 阶段3 Boise(引导从u盘,硬盘,cdrom等启动) Grub Kernel 系统 preloader(完成下载+启动引导) Lk kernel Systermimg android智能机上 分区表再各个阶段的作用: 注意:Dumchar是debug信息用(用户模式读写某分区镜像等),分区表的建立等由内核block子系统来完成.dumchar调试如下: Dumchar_info的分区信息在哪里创建:??? /dev/bootimg /

大数据存储的秘密之分区

分区,又称为分片,是解决大数据存储的常见解决方案,大数据存储量超过了单节点的存储上限,因此需要进行分区操作将数据分散存储在不同节点上,通常每个单个分区可以理解成一个小型的数据库,尽管数据库能同时支持多个分区操作:分区引入多分区概念,可以同时对外服务提高性能. 常常和分区一并提及的概念是复制,分区通常与复制结合使?,使得每个分区的副本存储在多个节点上. 这意味着,即使每条记录属于?个分区,它仍然可以存储在多个不同的节点上以获得容错能?.分区在许多技术或框架中都有体现,例如MQ中topic下的分区消