转:mosquitto源码分析(一)

一、  Mosquitto简介

mosquitto是一款实现了消息推送协议MQTT v3.1 的开源消息代理软件,提供轻量级的,支持可发布/可订阅的的消息推送模式,使设备对设备之间的短消息通信变得简单,例如现在应用广泛的低功耗传感器,手机、嵌入式计算机、微型控制器等移动设备。

Mosquitto采用出版/订阅的模式实现MQTT协议,这种设计模式将通信终端之间的关系统一到服务程序中进行管理,可极大减轻客户端的开发和维护工作。

1.1、  mqtt协议简介

MQTT(MessageQueuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。在某些应用场合中,可通过该协议维持与客户端的长连接。关于mqtt协议更详细的介绍,请参考其官方网站:http://mqtt.org/

其他版本源码下载位置:http://mosquitto.org/files/source/

1.2、  出版/订阅模式简介

出版/订阅模式定义了如何向一个节点发布和订阅消息,这些节点被称作主题(topic)。主题可以被认为是消息的传输中介,发布者(publisher)发布消息到主题,订阅者(subscriber) 从主题订阅消息。这种模式使得消息订阅者和消息发布者保持互相独立,不需要接触即可保证消息的传送。

Tcp协议中,tcp连接只提供一对一的可靠传输,例如:主机A与B进行通信,则发起tcp连接的一端只需要知道对方的ip地址和端口号即可,如下图1-1所示:

图1-1          一对一通信

每一个tcp连接都是由下面的五个元素确定:

<源ip地址,源端口号,目的ip地址,目的端口号,通信协议>

在实际程序的开发过程中 一条连接建立之后,它可能需要在一段时间内一直被通信双方所保持,以备下次数据传输使用。另外,通信的终端数目可能是多个,这就需要每个终端都要维持它所有的通信关系,如下图1-2所示

图1-2          多对多通信

此时,每个参与通信的客户端所需维持的连接数量将非常庞大,这非常不利于程序的开发和实现。出版/订阅模式即是一种解决这种问题的方法,它通过增加一个中间层的方式,让中间层来维护这种多对多的关系,这个中间层通常称之为服务器,如下图1-3所示:

图1-3 增加中间层的多对多通信

通过增加中间层服务器,每个客户端都只需要维护自己同服务器之间的连接即可,而客户端之间的关系则交由中间服务器来维护,这种设计模式将复杂的通信关系维护工作从客户端剥离出来,非常方便客户端的开发和维护。

Mosquito程序即是通过这种方式进行工作,在mosquitto程序内部,将客户端之间的关系通过一棵订阅树来维持。

1.3、  Mosquito

Mosquito源码目录结构介绍。

|---- mosquitto-1.2

|---- client

|---- examples

|----mysql_log

|----temperature_conversion

|---- installer

|---- lib

|---- cpp

|---- jsws

|----Python

|---- logo

|---- man

|---- po

|----libmosquitto

|----mosquitto

|----mosquitto.conf

|----mosquitto_pub

|----mosquitto_sub

|----mosquitto-tls

|----mqtt

|---- misc

|----currentcost

|----gnome-panel

|---- security

|---- service

|---- monit

|----svscan

|----upstart

|---- src

|----db_dump

|---- test

|----broker

|---- c

|---- lib

|---- c

|----cpp

|----Python

|----python3

|---- ssl

|----demoCA

|----rootCA

|----signingCA

所需关注的目录有/ mosquitto-1.2/src、/ mosquitto-1.2/lib、/ mosquitto-1.2/client三个目录,其中src和lib目录下主要放置mosquitto的实现代码以及部分底层与网络相关的操作,client目录主要为两个客户端程序的实现源码。

Mosquito的源码及其相关文档可从其官方网站获取,其官方网站为:http://mosquitto.org/

mosquitto客户端和服务器运行命令

[1] 发布者客户端运行命令示例:
./mosquitto_pub -h 192.168.6.243 -p 1883 -t "111" -m "this is jason.hou" -u 111 -P 111

[2] 订阅者客户端运行命令示例:
./mosquitto_sub -h 192.168.6.243 -i 111 -p 1883 -t 111 -k 60 -d -c -u hjx -P hjx

[3] mosquitto服务器端运行命令示例:
./mosquitto

时间: 2024-11-17 03:56:31

转:mosquitto源码分析(一)的相关文章

转:mosquitto源码分析(二)

 本文由逍遥子撰写,转发请标注原址: http://write.blog.csdn.NET/postedit/21462005 一.  Mosquito的数据结构 1)  struct mosquito 结构体struct mosquito主要用于保存一个客户端连接的所有信息,例如用户名.密码.用户ID.向该客户端发送的消息等,其定义为: struct mosquitto { int sock; char*address; char *id; char*username; char*passwo

TeamTalk源码分析之login_server

login_server是TeamTalk的登录服务器,负责分配一个负载较小的MsgServer给客户端使用,按照新版TeamTalk完整部署教程来配置的话,login_server的服务端口就是8080,客户端登录服务器地址配置如下(这里是win版本客户端): 1.login_server启动流程 login_server的启动是从login_server.cpp中的main函数开始的,login_server.cpp所在工程路径为server\src\login_server.下表是logi

Android触摸屏事件派发机制详解与源码分析二(ViewGroup篇)

1 背景 还记得前一篇<Android触摸屏事件派发机制详解与源码分析一(View篇)>中关于透过源码继续进阶实例验证模块中存在的点击Button却触发了LinearLayout的事件疑惑吗?当时说了,在那一篇咱们只讨论View的触摸事件派发机制,这个疑惑留在了这一篇解释,也就是ViewGroup的事件派发机制. PS:阅读本篇前建议先查看前一篇<Android触摸屏事件派发机制详解与源码分析一(View篇)>,这一篇承接上一篇. 关于View与ViewGroup的区别在前一篇的A

HashMap与TreeMap源码分析

1. 引言     在红黑树--算法导论(15)中学习了红黑树的原理.本来打算自己来试着实现一下,然而在看了JDK(1.8.0)TreeMap的源码后恍然发现原来它就是利用红黑树实现的(很惭愧学了Java这么久,也写过一些小项目,也使用过TreeMap无数次,但到现在才明白它的实现原理).因此本着"不要重复造轮子"的思想,就用这篇博客来记录分析TreeMap源码的过程,也顺便瞅一瞅HashMap. 2. 继承结构 (1) 继承结构 下面是HashMap与TreeMap的继承结构: pu

Linux内核源码分析--内核启动之(5)Image内核启动(rest_init函数)(Linux-3.0 ARMv7)【转】

原文地址:Linux内核源码分析--内核启动之(5)Image内核启动(rest_init函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.chinaunix.net/uid-25909619-id-4938395.html 前面粗略分析start_kernel函数,此函数中基本上是对内存管理和各子系统的数据结构初始化.在内核初始化函数start_kernel执行到最后,就是调用rest_init函数,这个函数的主要使命就是创建并启动内核线

Spark的Master和Worker集群启动的源码分析

基于spark1.3.1的源码进行分析 spark master启动源码分析 1.在start-master.sh调用master的main方法,main方法调用 def main(argStrings: Array[String]) { SignalLogger.register(log) val conf = new SparkConf val args = new MasterArguments(argStrings, conf) val (actorSystem, _, _, _) =

Solr4.8.0源码分析(22)之 SolrCloud的Recovery策略(三)

Solr4.8.0源码分析(22)之 SolrCloud的Recovery策略(三) 本文是SolrCloud的Recovery策略系列的第三篇文章,前面两篇主要介绍了Recovery的总体流程,以及PeerSync策略.本文以及后续的文章将重点介绍Replication策略.Replication策略不但可以在SolrCloud中起到leader到replica的数据同步,也可以在用多个单独的Solr来实现主从同步.本文先介绍在SolrCloud的leader到replica的数据同步,下一篇

zg手册 之 python2.7.7源码分析(4)-- pyc字节码文件

什么是字节码 python解释器在执行python脚本文件时,对文件中的python源代码进行编译,编译的结果就是byte code(字节码) python虚拟机执行编译好的字节码,完成程序的运行 python会为导入的模块创建字节码文件 字节码文件的创建过程 当a.py依赖b.py时,如在a.py中import b python先检查是否有b.pyc文件(字节码文件),如果有,并且修改时间比b.py晚,就直接调用b.pyc 否则编译b.py生成b.pyc,然后加载新生成的字节码文件 字节码对象

LevelDB源码分析--Iterator

我们先来参考来至使用Iterator简化代码2-TwoLevelIterator的例子,略微修改希望能帮助更加容易立即,如果有不理解请各位看客阅读原文. 下面我们再来看一个例子,我们为一个书店写程序,书店里有许多书Book,每个书架(BookShelf)上有多本书. 类结构如下所示 class Book { private: string book_name_; }; class Shelf { private: vector<Book> books_; }; 如何遍历书架上所有的书呢?一种实