Derive representation formula from Green’s identity

This article introduces how to derive the representation formula used in BEM from Green‘s identity.

Interior and exterior representation formulas

Let $u$ be a harmonic function in the free space $\mathbb{R}^d$: \begin{equation} \label{eq:harmonic-function} \triangle u = 0 \quad (x \in \mathbb{R}^d). \end{equation} Let $\gamma(x, y)$ be the fundamental solution for the free space such that \begin{equation} \label{eq:laplace-equation} -\triangle_x \gamma(x, y) = \delta(x - y) \quad (x, y \in \mathbb{R}^d). \end{equation} It has the following formulation: \begin{equation} \label{eq:fundamental-solution} \gamma(x, y) = \begin{cases} -\frac{1}{2\pi}\ln\lvert x - y \rvert & (d = 2) \\ \frac{\lvert x - y \rvert^{2-d}}{(d-2)\omega_d} & (d > 2) \end{cases}, \end{equation} where $\omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$, $x$ is the field point and $y$ is the source point. Let $\psi$ and $\varphi$ be two functions having 2nd order derivatives in a bounded domain $\Omega$ in $\mathbb{R}^d$ with its boundary $\Gamma = \pdiff\Omega$. Let $\vect{F} = \psi\nabla\varphi - \varphi\nabla\psi$ and apply the Gauss divergence theorem, we have the famous Green‘s 2nd identity as below: \begin{equation} \label{eq:green-2nd-identity} \int_{\Omega} \left( \psi\triangle\varphi - \varphi\triangle\psi \right) \intd V = \int_{\Gamma} \left( \psi \frac{\pdiff\varphi}{\pdiff \normvect} - \varphi \frac{\pdiff \psi}{\pdiff \normvect} \right) \intd S, \end{equation} where $\normvect$ is the unit outward normal vector with respect to domain $\Omega$, which points from interior to exterior. By replacing $\psi$ with $\gamma(x,y)$ and $\varphi$ with $u(x)$, and performing integration and differentiation with respect to the variable $x$, we have \begin{equation} \label{eq:green-2nd-identity-with-fundamental-solution} \int_{\Omega} \left( \gamma(x,y)\triangle_x u(x) - u(x)\triangle_x\gamma(x,y) \right) \intd V(x) = \int_{\Gamma} \left( \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} - u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \right) \intd S(x). \end{equation} After substituting \eqref{eq:harmonic-function} and \eqref{eq:laplace-equation}, we have $$ u(y) = \int_{\Gamma} \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} \intd S(x) - \int_{\Gamma} u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \intd S(x) \quad (y \in \Int(\Omega)). $$ where $\Int(\Omega)$ is the interior of $\Omega$. Due to the symmetric property of the fundamental solution \begin{align} \label{eq:fundamental-solution-symmetry} \gamma(x,y) &= \gamma(y,x) \\ \frac{\pdiff\gamma(y,x)}{\pdiff \normvect(y)} = K^{*}(y,x) &= K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}, \end{align} after swappping the variables $x$ and $y$, we have the representation formula for the interior $\Int(\Omega)$ of $\Omega$ as below: \begin{equation} \label{eq:interior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega)), \end{equation} where $\psi(y) = \frac{\pdiff u(y)}{\pdiff \normvect(y)}$ and $K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}$. The first term in the above equation is the single layer potential, while the second term is the double layer potential.

Remark It can be seen that the interior representation formula in equation \eqref{eq:interior-representation-formula} has the same formulation as that derived from the direct method.

For the exterior $\Omega‘ = \mathbb{R}^d \backslash \overline{\Omega}$ of $\Omega$, a representation formula with the same formulation can be obtained as long as we assume that when $\abs{x} \rightarrow \infty$, both $\gamma(x,y)$ and $K(x,y)$ approach to zero, so that the integration on infinite boundary has no contribution. Therefore, the representation formula for the exterior of $\Omega$ is \begin{equation} \label{eq:exterior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi‘(y) \intd S(y) - \int_{\Gamma} K‘(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega‘)). \end{equation} Here $\psi‘(y) = \frac{\pdiff u(y)}{\pdiff \normvect‘(y)}$ and $K‘(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect‘(y)}$, where $\normvect‘$ is the unit outward normal vector with respect to the domain $\Omega‘$, which has opposite direction compared to $\normvect$.

Representation formula at the boundary $\Gamma$

It is well known that the single layer potential in equation \eqref{eq:interior-representation-formula} or \eqref{eq:exterior-representation-formula} is continuous across the boundary $\Gamma$, while the double layer potential has a jump, which is governed by the following theorem.

Theorem (Boundary limit of double layer potential) Let $\phi \in C(\Gamma)$ and $u$ be the double layer potential $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \mathbb{R}^d \backslash \Gamma) $$ with a charge density $\phi$. This equation has the following two cases: \alert{This needs to be further clarified!}

  1. interior representation formula: $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \Omega) $$
  2. exterior representation formula: $$ u(x) = \int_{\Gamma} K‘(x,y) \phi(y) \intd S(y) \quad (x \in \Omega‘) $$

Then the restrictions of $u$ to $\Omega$ and $\Omega‘$ both have continuous extensions to $\overline{\Omega}$ and $\overline{\Omega‘}$ respectively. Let $t \in \mathbb{R}$ and $\normvect$ be the unit outward normal vector of $\Omega$, the function $$ u_t(x) = u(x + t \normvect(x)) \quad (x \in \Gamma) $$ converges uniformly to $u_-$ when $t \rightarrow 0^-$ and to $u_+$ when $t \rightarrow 0^+$, where \begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + T_K\phi = -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + T_K\phi = \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}

Representation formula outside the domain $\Omega$

For the interior representation formula \eqref{eq:interior-representation-formula}, when the variable $x$ is outside the domain $\Omega$, $u$ evaluates to zero. This is because according to equation \eqref{eq:green-2nd-identity-with-fundamental-solution}, before swapping $x$ and $y$, when the variable $y$ is outside $\Omega$, the Dirac function $\Delta_x \gamma(x,y) = -\delta(x - y)$ evaluates to zero. Similarly, for the exterior representation formula \eqref{eq:exterior-representation-formula}, when the variable $x$ is outside the domain $\Omega‘$, $u$ also evaluates to zero.

Summary of representation formulas‘ behavior in $\mathbb{R}^d$

By summarizing previous results, we can conclude that for the interior representation formula \eqref{eq:interior-representation-formula} \begin{equation} \label{eq:interior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) = cu(x) \end{equation} where $$ c = \begin{cases} 1 & x \in \Int(\Omega) \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega‘) \end{cases} $$ Similarly for the exterior representation formula \eqref{eq:exterior-representation-formula} we have \begin{equation} \label{eq:exterior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi‘(y) \intd S(y) - \int_{\Gamma} K‘(x,y) u(y) \intd S(y) = c‘u(x) \end{equation} where $$ c‘ = \begin{cases} 1 & x \in \Int(\Omega‘) \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega) \end{cases} $$ If we also use the normal vector $\normvect$ with respect to $\Omega$ in \eqref{eq:interior-representation-formula-behavior}, we have \begin{equation} \label{eq:interior-representation-formula-with-normvect} -\int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) + \int_{\Gamma} K(x,y) u(y) \intd S(y) = c‘u(x). \end{equation} It should be noted that although the left hand sides of \eqref{eq:interior-representation-formula-behavior} and \eqref{eq:interior-representation-formula-with-normvect} have the same form with opposite signs, they do not cancel with other because the limiting values of the double layer charge density $u$ used in the integral are approached to $\Gamma$ from interior and exterior respectively. Therefore, although the single layer potential is continuous across the boundary $\Gamma$, the double layer potential has a jump. Then we have the following jump behavior for the double layer potential at $\Gamma$ \begin{equation} \label{eq:double-layer-potential-jump} \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega‘} \intd S(y) - \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega} \intd S(y) = u(x) \quad (x \in \Gamma), \end{equation} which is consistent with $u_+ - u_- = \phi$ derived from the theorem for the boundary limit of double layer potential.

时间: 2024-08-06 07:59:15

Derive representation formula from Green’s identity的相关文章

Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

DISCRETE DIFFERENTIAL GEOMETRY : AN APPLIED INTRODUCTION Last updated: November 19, 2015 ======================================== Ch 1. INTRODUCTION 把exterior calculus作为模型处理的语言.the exterior calculus of differential forms is the modern language of dif

【ASP.NET Identity教程】ASP.NET Identity入门

注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序的用户管理,以及实现应用程序的认证与授权等相关技术,译者希望本系列教程成为掌握ASP.NET Identity技术的一份完整而有价值的资料,希望得到广大园友的高度推荐. 13 Getting Started with Identity 13 Identity入门 Identity is a new

Openstack之identity server(keystone)

User Digital representation of a person, system, or service who usesOpenStack cloud services. The Identity service validates that incomingrequests are made by the user who claims to be making the call.Users have a login and may be assigned tokens to

OpenStack Identity API v3 (CURRENT)

Table Of Contents Identity API v3 (CURRENT) Authentication and token management Password authentication with unscoped authorization Password authentication with scoped authorization Password authentication with explicit unscoped authorization Token a

OpenStack Identity API v3

Table Of Contents OpenStack Identity API v3 What’s New in Version 3.7 What’s New in Version 3.6 What’s New in Version 3.5 What’s New in Version 3.4 What’s New in Version 3.3 What’s New in Version 3.2 What’s New in Version 3.1 What’s New in Version 3.

Deep Learning Face Representation from Predicting 10,000 Classes论文笔记

Deep Learning Face Representation from Predicting 10,000 Classes论文笔记(2015.03.24) 一.基本思路 作者利用卷积神经网络(Convolutional Neural Network,CNN)对大量样本进行训练,提取Deep hidden identity feature(DeepID)特征,然后利用这些特征进行人脸验证(Face Verification).在LFW(Labeled Faces in the Wild)库上

cv论文(SPARSE REPRESENTATION相关)

上个博文我讲了一些CNN相关的论文,比较浅显都是入门知识,这节课来总结一些稀疏表示方面的文章.至于上个博文说到的要讲的sparse coding的知识,我将会放在Deep Learning的专题里面讲解.好了,闲话不多说,下面还是列出几篇我看过的sparse representation方面的论文. 第一篇:Robust Face Recognition via Sparse Representation,这是08年马毅等发表PAMI上的一篇文中,利用稀疏表达识别人脸,打开Google Scho

Hibernate @Formula 注解方式

1.Formula的作用 Formula的作用就是用一个查询语句动态的生成一个类的属性 就是一条select count(*)...构成的虚拟列,而不是存储在数据库里的一个字段.用比较标准的说法就是:有时候,你想让数据库,而非JVM,来替你完成一些计算,也可能想创建某种虚拟列,你可以使用sql片段,而不是将属性映射(物理)列.这种属性是只读的(属性值由公式求得).Formula甚至可以包含sql子查询 2.Formula的使用 package aa; import static javax.pe

【Hibernate学习笔记-5】@Formula注解的使用

ORM映射关系:注解方式 package org.crazyit.app.domain; import javax.persistence.*; import org.hibernate.annotations.Formula; @Entity(name="news_inf") public class News { // 消息类的标识属性 @Id @GeneratedValue(strategy=GenerationType.IDENTITY) private Integer id;