Hive架构原理

什么是Hive

  • Hive是由Facebook开源用于解决海量结构化日志的数据统计;Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射 成一张表,并提供类SQL查询功能,底层计算引擎默认为Hadoop的MapReduce(本质是将sql转化成mapreduce程序),可以将引擎更换为Spark/Tez;

Hive架构

Hive架构.PNG

  • 如图中所示,Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
  • 1)用户接口:Client
    • CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)
  • 2)元数据:Metastore
    • 元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
      默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
    • 推荐学习博客 数仓--Hive--元数据表结构学习
  • 3)Hadoop
    • 使用HDFS进行存储,使用MapReduce进行计算。
  • 4)驱动器:Driver
    (1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
    (2)编译器(Physical Plan):将AST编译生成逻辑执行计划。
    (3)优化器(Query Optimizer):对逻辑执行计划进行优化。
    (4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

Hive优点

  • 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手);
  • 避免了去写MapReduce,减少开发人员的学习成本;
  • 统一的元数据管理,可与impala/spark等共享元数据;
  • 易扩展(HDFS+MapReduce:可以扩展集群规模;支持自定义函数);

Hive使用场景

  • 数据的离线处理;比如:日志分析,海量结构化数据离线分析…
  • Hive的执行延迟比较高,因此hive常用于数据分析的,对实时性要求不高的场合;
  • Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。

Hive的执行流程

  • HiveQL通过CLI/web UI或者thrift 、 odbc 或 jdbc接口的外部接口提交,经过complier编译器,运用Metastore中的元数据进行类型检测和语法分析,生成一个逻辑方案(logical plan),然后通过简单的优化处理,产生一个以有向无环图DAG数据结构形式展现的map-reduce任务。

SQL转化成MapReduce过程

  • Hive是如何将SQL转化为MapReduce任务的,整个编译过程分为六个阶段:

    • 1-Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象语法树AST Tree;
    • 2-遍历AST Tree,抽象出查询的基本组成单元QueryBlock;
    • 3-遍历QueryBlock,翻译为执行操作树OperatorTree;
    • 4-逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量;
    • 5-遍历OperatorTree,翻译为MapReduce任务;
    • 6-物理层优化器进行MapReduce任务的变换,生成最终的执行计划。

原文地址:https://www.cnblogs.com/sx66/p/12039157.html

时间: 2024-10-15 02:06:49

Hive架构原理的相关文章

hive架构原理简析-mapreduce部分

转自:http://blog.csdn.net/yangbutao/article/details/8331937 整个处理流程包括主要包括,语法解析(抽象语法树,AST,采用antlr),语义分析(sematic Analyzer生成查询块),逻辑计划生成(OP tree),逻辑计划优化,物理计划生成(Task tree),以及物理计划执行组成. 下面这张图(不知道是谁画的)简要的说明了整个处理的流程 这里重点说一下物理计划生成,以及执行. 物理计划的生成是根据逻辑操作树(operator)来

Hive的配置| 架构原理

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能. 本质是:将HQL转化成MapReduce程序 1)Hive处理的数据存储在HDFS 2)Hive分析数据底层的实现是MapReduce 3)执行程序运行在Yarn上 Hive架构原理 Hive安装及配置 (1)把apache-hive-1.2.1-bin.tar.gz上传到linux的/opt/software目录下 (2)解压apache-hive-1.2.1-bin.tar.gz到/o

深入学习Hive应用场景及架构原理

Hive背景介绍 Hive最初是Facebook为了满足对海量社交网络数据的管理和机器学习的需求而产生和发展的.互联网现在进入了大数据时代,大数据是现在互联网的趋势,而hadoop就是大数据时代里的核心技术,但是hadoop的mapreduce操作专业性太强,所以facebook在这些基础上开发了hive框架,毕竟世界上会sql的人比会java的人多的多,hive可以说是学习hadoop相关技术的一个突破口.那么,hive是什么呢? Hive简介 简单的说:hive是基于hadoop的数据仓库.

Hive架构

一.Hive是什么,作用是什么? 可以这么简单得理解,Hive是一个工具.它得作用是查询hdfs文件系统上得海量数据,方式是通过HQL语句查询(类似sql). 或许你又有疑问了,明明可以在java程序里直接访问HDFS的数据了啊,为什么还出来一个Hive工具,不是多此一举吗?这种想法的确是对的,而为什么还需要hive呢, 其实hive这个工具就是为了方便那些熟悉sql语句,但是java技能水平有限的小伙伴们. 二.Hive架构: 这里我们把Hive架构图从上往下分析: 1.最顶层--用户接口:

Hive之 hive架构

Hive架构图 主要分为以下几个部分: 用户接口,包括 命令行CLI,Client,Web界面WUI,JDBC/ODBC接口等 中间件:包括thrift接口和JDBC/ODBC的服务端,用于整合Hive和其他程序. 元数据metadata存储,通常是存储在关系数据库如 mysql, derby 中的系统参数 底层驱动:包括HiveQL解释器.编译器.优化器.执行器(引擎). Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算. 用户接口主要有三个:CLI,Client 和

以属性为核心驱动的 全领域通用架构设计原理 (简称:属性架构原理)

以属性为核心驱动的全领域通用架构设计原理 (简称:属性架构原理) 联系方式:13547930387 Email:[email protected] 一.个人声明 我,参加工作也有5年多了,是一名普通的不能在普通的程序员,一直在使用公司自己的产品进行开发,因此技术比较菜,此设计完全是按照自己天真的想法而设计的,如果有不合理或很搞笑的地方,请轻拍,由衷的希望大家能提出宝贵的意见: 根据此设计原理我也做了一个简单的(demo)架构来支撑和验证此理论的可行性,由于技术功底不太好,有不合理之处请大家谅解,

【转】.NET/ASP.NET Routing路由(深入解析路由系统架构原理)

阅读目录: 1.开篇介绍 2.ASP.NET Routing 路由对象模型的位置 3.ASP.NET Routing 路由对象模型的入口 4.ASP.NET Routing 路由对象模型的内部结构 4.1]UrlRoutingModule 对象内部结构 4.2]RouteBase.Route.RouteCollection.RouteTable 路由核心对象模型 4.3]RouteValueDictionary.RouteData.RequestContext 路由数据对象模型 4.4]IRou

Hive架构层面优化之四 常用复杂/低效的统计从源上给出,以避免上层作业过多计算

案例一:trackinfo,基础表处理常用的低性能UDF 背景描述:日志信息10分钟加载一次到实时日志表trackreal中(按小时分区),为了保证实时性,在加载的过程中并没有做任何的过滤处理,加载到trackreal表后再过滤非法数据.爬虫数据等,生成按天增量日志表trackinfo,然后根据不同的page_type来统计流量. 解决方案如下: select '首页', count(*) pv, #每条记录就是一条pv count(distinct session_id) uv #根据sess

Hive架构层面优化之二合理利用中间结果集(单Job)

是针对单个作业,针对本job再怎么优化也不会影响到其他job: Hadoop的负载主要有两部分:CPU负载和IO负载: 问题:机器io开销很大,但是机器的cpu开销较小,另外map输出文件也较大,怎么办? 解决办法:通过设置map的中间输出进行压缩就可以了,这个不会影响最终reduce的输出. 集群中的机器一旦选定了,那么CPU就没的改变了,所以集群的最主要的负载还是IO负载: 压缩技术虽然可以降低IO负载,但是同时也加重了CPU负载,治标不治本,CPU加重了,整体性能还是上不去:如果当前CPU