1.自定义 schema(Rdd[Row] => DataSet[Row])
import org.apache.spark.sql.types._ val peopleRDD = spark.sparkContext.textFile("README.md") val schemaString = "name age" val fields = schemaString.split(" ") .map(fieldName => StructField(fieldName, StringType, nullable = true)) val schema = StructType(fields) val rowRDD = peopleRDD .map(_.split(",")) .map(attributes => Row(attributes(0), attributes(1).trim)) rowRDD.collect().foreach(println) val df = spark.createDataFrame(rowRDD, schema)
2.借助 case class 隐式转换(Rdd[Person] => DataSet[Row])
object DFTest { case class Person(name: String, age: Int) def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("DataFrame Application"). master("local") .getOrCreate() import spark.implicits._ val peopleRDD = spark.sparkContext.textFile("README.md") val personRDD = peopleRDD .map(_.split(",")) .map(attributes => Person(attributes(0), attributes(1).toInt)) personRDD.collect().foreach(println) personRDD.toDF().show() } }
3.直接从数据源创建
val df = spark .read .option("header", value = true) .csv("/home/lg/Documents/data/1987.csv")
此外
spark.read.jdbc spark.read.json spark.read.parquet
233
原文地址:https://www.cnblogs.com/lemos/p/12001729.html
时间: 2024-11-01 18:55:24