Educational Codeforces Round 80 (Rated for Div. 2)部分题解

A. Deadline

题目链接

题目大意

给你\(n,d\)两个数,问是否存在\(x\)使得\(x+\frac{d}{x+1}\leq n\),其中\(\frac{d}{x+1}\)向上取整。

解题思路

  • 方案一:利用均值不等式公式推导

    \(x+\frac{d}{x+1}=x+1+\frac{d}{x+1}-1\geq2\sqrt{d}-1\)

    所以 \(\min(x+\frac{x}{d+1})=2\sqrt{d}-1\)

    因此去判断\(2\sqrt{d}-1\leq n\)是否成,即\(4\times n^2\leq (n+1)^2\)是否成立即可。

  • 方案二:暴力判断

    很明显的一点就是\(x\)的值不会超过\(\sqrt{d}\),所以遍历判断一下即可。

AC代码1

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int t;
    cin>>t;
    while(t--){
        long long n,d;
        cin>>n>>d;
        if(4*d<=(n+1)*(n+1)){
            cout<<"YES"<<endl;
        }else{
            cout<<"NO"<<endl;
        }
    }
    return 0;
}

AC代码2

#include<bits/stdc++.h>
const int maxn=1e3+100;
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
int main()
{
    // freopen("data.txt","r",stdin);
    int t;
    cin>>t;
    while(t--){
        int n,d;
        cin>>n>>d;
        bool flag=false;
        for(int i=0;i*i<=d;i++){
            if((i+d/(i+1)+(d%(i+1)==0?0:1))<=n){
                flag=true;
            }
        }
        if(flag)cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
    }
    return 0;
}

总结

最开始拿到这道题的时候居然有点懵,其实应该理所应当的想到\(x\)的值不会超过\(\sqrt{d}\)

B. Yet Another Meme Problem

题目链接

题目大意

给你两个数\(A,B\),求满足\(1\leq a \leq A\),\(1\leq b \leq B\)并且 \(a\times b+ a+b = a\times 10^{b的位数}+b\)的个数。

解题思路

在做这道题的时候其实出题人已经给了提示,所以很轻松的想到了结论,即找到满足\(\leq b\)并且每一位都是\(9\)的数字个数\(\times a\)即为答案。

结论推导:

\(a\times b+a+b=a\times 10^{b的位数}+b\)

\(a\times b+a = a\times 10^{b的位数}\)

\(a\times (b+1) = a\times 10^{b的位数}\)

\(b+1 = 10^{b的位数}\)

所以只有所有位都是\(9\)的数字才能满足,即\(9,99,999,\cdots\)

AC代码

#include<bits/stdc++.h>
const int maxn=1e3+100;
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
int main()
{
    // freopen("data.txt","r",stdin);
    int t;
    cin>>t;
    while(t--){
        ll a,b;
        cin>>a>>b;
        string str = to_string(b);
        int len = str.size()-1;
        bool flag = true;
        for(int i=0;i<str.size();i++){
            if(str[i]!='9'){
                flag=false;
                break;
            }
        }
        if(flag)len++;
        cout<<a*len<<endl;
    }
    return 0;
}

总结

这道题自己在求数字个数的时候用的是字符串求法,其实如果不是大数的话,个人认为用整数运算即可,还方便点。丢个代码出来。

int cnt=0;
int number=9;
while(number<=b){
    number = number*10+9;
    cnt++;
}

C. Two Arrays

题目链接

题目大意

给你两个数字\(n,m\),求用\(1\cdots n\)这\(n\)个数(数字可以重复)构造出两个长度为\(m\)的数组\(a,b\)满足一下要求的数组数量。

  • 对于数组\(a,b\)中所有元素都满足\(a_i\leq b_i\)
  • 数组\(a\)是非递减的
  • 数组\(b\)是非递增的

解题思路

啊啊啊,这道题自己在做的时候没有想到把两个数组给合起来,思维太线性了,没有转过弯。数组\(a\)是非递减的,数组\(b\)是非递增的,如果将数组\(b\)反转连接在数组\(a\)的后面就是一个非递减数组,那么题目要求就转化为求用\(1\cdots n\)这\(n\)个数构造一个长度为\(2\times m\)的非递减数组的个数。

  • 复杂度为\(O(n^2m)\)的转移方程

    \(dp[i][j]\)表示第\(i\)个位置放数字\(j\)的方案数,那么\(dp[i][j]=\sum_{k=1} ^j dp[i-1][k]\)

  • 复杂度为\(O(nm)的转移方程\)

    \(dp[i][j]\)表示第\(i\)个位置放数字\(j\)的方案数,那么\(dp[i][j]=dp[i-1][j]+dp[i][j-1]\),这里利用了前缀和的思想。

    推导如下:

    \(dp[i][j]=\sum_{k=1} ^j dp[i-1][k]=\sum_{k=1}^{j-1}dp[i-1][k]+dp[i-1][j]\)

    因为\(dp[i][j-1]=\sum_{k=1} ^{j-1} dp[i-1][k]\)

    所以 \(dp[i][j]=dp[i-1][j]+dp[i][j-1]\)

    又或者在不知道如何推导的情况下可以从思维上这样想

    在第\(i\)个位置上可以放\(j-1\),那么在第\(i\)个位置上肯定也可以放\(j\),所以放\(j\)的个数肯定会包含放\(j-1\)的个数,但这样得到的所有方案在\(i-1\)这个位置上最大的是\(j-1\),其实在\(i-1\)这个位置可以放\(j\),所以再加上第\(i-1\)位置上放\(j\)的方案数。

AC代码

#include<bits/stdc++.h>
const int mod=1e9+7;
const int maxn=2e1+10;
const int maxm=1e3+20;
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
int dp[maxn][maxm];
int main()
{
    // freopen("data.txt","r",stdin);
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)dp[1][i]=1;

    for(int i=2;i<=2*m;i++){
        for(int j=1;j<=n;j++){
            dp[i][j]=(dp[i][j-1]+dp[i-1][j])%mod;
        }
    }
    ll ans=0;
    for(int i=1;i<=n;i++){
        ans+=dp[2*m][i];
        ans%=mod;
    }
    cout<<ans<<endl;
    return 0;
}

总结

后悔拿到这道题没思考,再仔细思考一下,在理解题目的意思之后应当建立对应的模型,思维不能太线性了。

原文地址:https://www.cnblogs.com/zrcsy/p/12196890.html

时间: 2024-11-06 03:52:47

Educational Codeforces Round 80 (Rated for Div. 2)部分题解的相关文章

Educational Codeforces Round 80 (Rated for Div. 2)

\[Educational\ Codeforces\ Round\ 80\ (Rated\ for\ Div.\ 2)\] A.Deadline 打勾函数找最小值,在\(\sqrt{d}\)邻域里找\(x\)最小化\(x+\lceil\frac{d}{x+1}\rceil\)即可 //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<bits/stdc++.h> using namespace

Educational Codeforces Round 59 (Rated for Div. 2) DE题解

Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contest/1107/problem/D 题意: 给出一个n*(n/4)的矩阵,这个矩阵原本是一些01矩阵,但是现在四个四个储存进二进制里面,现在给出的矩阵为0~9以及A~F,表示0~15. 然后问这个矩阵能否压缩为一个(n/x)*(n/x)的矩阵,满足原矩阵中大小为x*x的子矩阵所有数都相等(所有子矩阵构

Educational Codeforces Round 80 (Rated for Div. 2)(C - Two Arrays )

C - Two Arrays 题目链接:https://codeforces.com/contest/1288/problem/C 题目: 题意:给你n,m,利用1~n之间的数(可重复)来组成长度为m的数组a,b,要求数组a非递减,数组b非递增,且a数组的数<=b数组中的数,求出a,b数组对数 思路:用动态规划,dp[i][j]是第i个位置放数字j的方案数,根据题意可以将b数组反置然后接在a后面,则该数组长度为2m,为一个非递减序列,则就是求1~n这些数字可重复组成多少种长度为2m的非递减序列,

Educational Codeforces Round 80 (Rated for Div. 2)参加感悟

这次比赛有14000+的人报名,结果我得了266名,创了新纪录. 进过这次比赛,我有回答了1800+. 寒假到了,又可以每次比赛都打了.平时进步很慢,我希望能在寒假有更大的进步. 作为寒假第一场比赛,发挥让我还是很满意的. 开始讲题: A: http://codeforces.com/contest/1288/problem/A 这题太水了,直接是sqrt(d)-1和sqrt(d),如果它们不行,那么其他的也肯定不行. 直接上代码: 1 #include<bits/stdc++.h> 2 #d

Educational Codeforces Round 80 (Rated for Div. 2(A Deadline )

(A) Deadline 题目: 思路:一开始还傻傻的暴力康康....只要求出令x=n的一半就行,然后判断 1 #include<bits/stdc++.h> 2 using namespace std; 3 int main() 4 { 5 //freopen("text","r",stdin); 6 int T; 7 scanf("%d",&T); 8 while(T--) 9 { 10 //cout<<cei

题解 Educational Codeforces Round 80 [Rated for Div. 2](CF1288)

前言:11点的时候某天下第一可爱的萌神问我怎么不打CF,跑去开题,11:30终于开了C和D,秒了一下,考后萌神轻松上分并告诉我E的tag于是我赛后补题. A:n/x上取整是(n-1)/x+1,式子变形成x+1+(n-1)/(x+1)<=d.根据a+b>=2√ab随便化简一下.(20s秒了??) 1 #include<stdio.h> 2 #include<math.h> 3 using namespace std; 4 int T,n,d,x,y; 5 int main

Educational Codeforces Round 80 (Rated for Div. 2) C - Two Arrays(DP)

???♀? ???♀? ???♀? 题意:从1~n里面选出来m个数字组成a数组,再选出来m个组成b数组,要求a非递减,b非递增,且bi>=ai 1,说是选两个数组其实就是选出来一个长m*2的非递减数组 2,假设要从n的全排列中选出来m长的非递减数组,因为元素是可重复的,最多重复m次,其实就是相当于从下面这个矩阵中选择元素 从这个矩阵中选择元素,每行只能选择一个,枚举我们选出的k个元素的最小值为[ i , j ]位置,那么除去这个元素选择k-1个元素的方案数之和就是k个元素,如图中红色标出位置,最

Educational Codeforces Round 80 (Rated for Div. 2)C(DP)

1 #define HAVE_STRUCT_TIMESPEC 2 #include<bits/stdc++.h> 3 using namespace std; 4 const long long mod = 1e9+7; 5 long long pre[1007][1007],temp[1007][1007]; 6 int main(){ 7 ios::sync_with_stdio(false); 8 cin.tie(NULL); 9 cout.tie(NULL); 10 int n,m;

Educational Codeforces Round 80 (Rated for Div. 2)【A,B,C,D】C题DP{GG了} D题【数组转化成二进制形式判断+二分】

A题直接暴力水过 1 #include<bits/stdc++.h> 2 3 using namespace std; 4 #define int long long 5 #define N 6666666 6 int arr[N]; 7 8 signed main(){ 9 int _;cin>>_; 10 while(_--){ 11 int n,m; 12 cin>>n>>m; 13 if(n>=m){ 14 cout<<"