这42个Python小例子,太走心~

告别枯燥,60秒学会一个Python小例子。奔着此出发点,我在过去1个月,将平时经常使用的代码段换为小例子,分享出来后受到大家的喜欢。

一、基本操作

1 链式比较

i = 3
print(1 < i < 3)  # False
print(1 < i <= 3)  # True

2 不用else和if实现计算器

from operator import *

def calculator(a, b, k):
    return {
        ‘+‘: add,
        ‘-‘: sub,
        ‘*‘: mul,
        ‘/‘: truediv,
        ‘**‘: pow
    }[k](a, b)

calculator(1, 2, ‘+‘)  # 3
calculator(3, 4, ‘**‘)  # 81

3 函数链

from operator import (add, sub)

def add_or_sub(a, b, oper):
    return (add if oper == ‘+‘ else sub)(a, b)

add_or_sub(1, 2, ‘-‘)  # -1

4 求字符串的字节长度

def str_byte_len(mystr):
    return (len(mystr.encode(‘utf-8‘)))

str_byte_len(‘i love python‘)  # 13(个字节)
str_byte_len(‘字符‘)  # 6(个字节)

5 寻找第n次出现位置

def search_n(s, c, n):
    size = 0
    for i, x in enumerate(s):
        if x == c:
            size += 1
        if size == n:
            return i
    return -1

print(search_n("fdasadfadf", "a", 3))# 结果为7,正确
print(search_n("fdasadfadf", "a", 30))# 结果为-1,正确

6 去掉最高最低求平均

def score_mean(lst):
    lst.sort()
    lst2=lst[1:(len(lst)-1)]
    return round((sum(lst2)/len(lst2)),2)

score_mean([9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]) # 9.07

7 交换元素

def swap(a, b):
    return b, a

swap(1, 0)  # (0,1)

二、基础算法

1 二分搜索

def binarySearch(arr, left, right, x):
    while left <= right:
        mid = int(left + (right - left) / 2); # 找到中间位置。求中点写成(left+right)/2更容易溢出,所以不建议这样写

        # 检查x是否出现在位置mid
        if arr[mid] == x:
            print(‘found %d 在索引位置%d 处‘ %(x,mid))
            return mid

            # 假如x更大,则不可能出现在左半部分
        elif arr[mid] < x:
            left = mid + 1 #搜索区间变为[mid+1,right]
            print(‘区间缩小为[%d,%d]‘ %(mid+1,right))

        elif x<arr[mid]:
            right = mid - 1 #搜索区间变为[left,mid-1]
            print(‘区间缩小为[%d,%d]‘ %(left,mid-1))

    return -1

2  距离矩阵

x,y = mgrid[0:5,0:5]
list(map(lambda xe,ye: [(ex,ey) for ex, ey in zip(xe, ye)], x,y))
[[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)],
 [(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)],
 [(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)],
 [(3, 0), (3, 1), (3, 2), (3, 3), (3, 4)],
 [(4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]]

三、列表

1 打印乘法表

for i in range(1,10):
    for j in range(1,i+1):
        print(‘{0}*{1}={2}‘.format(j,i,j*i),end="\t")
    print()

结果:

1*1=1
1*2=2   2*2=4
1*3=3   2*3=6   3*3=9
1*4=4   2*4=8   3*4=12  4*4=16
1*5=5   2*5=10  3*5=15  4*5=20  5*5=25
1*6=6   2*6=12  3*6=18  4*6=24  5*6=30  6*6=36
1*7=7   2*7=14  3*7=21  4*7=28  5*7=35  6*7=42  7*7=49
1*8=8   2*8=16  3*8=24  4*8=32  5*8=40  6*8=48  7*8=56  8*8=64
1*9=9   2*9=18  3*9=27  4*9=36  5*9=45  6*9=54  7*9=63  8*9=72  9*9=81

2 嵌套数组完全展开

from collections.abc import *

def flatten(input_arr, output_arr=None):
    if output_arr is None:
        output_arr = []
    for ele in input_arr:
        if isinstance(ele, Iterable): # 判断ele是否可迭代
            flatten(ele, output_arr)  # 尾数递归
        else:
            output_arr.append(ele)    # 产生结果
    return output_arr

flatten([[1,2,3],[4,5]], [6,7]) # [6, 7, 1, 2, 3, 4, 5]

3 将list等分为子组

from math import ceil

def divide(lst, size):
    if size <= 0:
        return [lst]
    return [lst[i * size:(i+1)*size] for i in range(0, ceil(len(lst) / size))]

r = divide([1, 3, 5, 7, 9], 2) # [[1, 3], [5, 7], [9]]

4 生成fibonacci序列前n项

def fibonacci(n):
    if n <= 1:
        return [1]
    fib = [1, 1]
    while len(fib) < n:
        fib.append(fib[len(fib) - 1] + fib[len(fib) - 2])
    return fib

fibonacci(5)  # [1, 1, 2, 3, 5]

5 过滤掉各种空值

def filter_false(lst):
    return list(filter(bool, lst))

filter_false([None, 0, False, ‘‘, [], ‘ok‘, [1, 2]])# [‘ok‘, [1, 2]]

6 返回列表头元素

def head(lst):
    return lst[0] if len(lst) > 0 else None

head([])  # None
head([3, 4, 1])  # 3

7 返回列表尾元素

def tail(lst):
    return lst[-1] if len(lst) > 0 else None

print(tail([]))  # None
print(tail([3, 4, 1]))  # 1

8 对象转换为可迭代类型

from collections.abc import Iterable

def cast_iterable(val):
    return val if isinstance(val, Iterable) else [val]

cast_iterable(‘foo‘)# foo
cast_iterable(12)# [12]
cast_iterable({‘foo‘: 12})# {‘foo‘: 12}

9 求更长列表

def max_length(*lst):
    return max(*lst, key=lambda v: len(v))

r = max_length([1, 2, 3], [4, 5, 6, 7], [8])# [4, 5, 6, 7]

10 出现最多元素

def max_frequency(lst):
    return max(lst, default=‘列表为空‘, key=lambda v: lst.count(v))

lst = [1, 3, 3, 2, 1, 1, 2]
max_frequency(lst) # 1 

11 求多个列表的最大值

def max_lists(*lst):
    return max(max(*lst, key=lambda v: max(v)))

max_lists([1, 2, 3], [6, 7, 8], [4, 5]) # 8

12 求多个列表的最小值

def min_lists(*lst):
    return min(min(*lst, key=lambda v: max(v)))

min_lists([1, 2, 3], [6, 7, 8], [4, 5]) # 1

13 检查list是否有重复元素

def has_duplicates(lst):
    return len(lst) == len(set(lst))

x = [1, 1, 2, 2, 3, 2, 3, 4, 5, 6]
y = [1, 2, 3, 4, 5]
has_duplicates(x)  # False
has_duplicates(y)  # True

14 求列表中所有重复元素

from collections import Counter

def find_all_duplicates(lst):
    c = Counter(lst)
    return list(filter(lambda k: c[k] > 1, c))

find_all_duplicates([1, 2, 2, 3, 3, 3])  # [2,3]

15 列表反转

def reverse(lst):
    return lst[::-1]

reverse([1, -2, 3, 4, 1, 2])# [2, 1, 4, 3, -2, 1]

16 浮点数等差数列

def rang(start, stop, n):
    start,stop,n = float(‘%.2f‘ % start), float(‘%.2f‘ % stop),int(‘%.d‘ % n)
    step = (stop-start)/n
    lst = [start]
    while n > 0:
        start,n = start+step,n-1
        lst.append(round((start), 2))
    return lst

rang(1, 8, 10) # [1.0, 1.7, 2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, 7.3, 8.0]

四、字典

1 字典值最大的键值对列表

def max_pairs(dic):
    if len(dic) == 0:
        return dic
    max_val = max(map(lambda v: v[1], dic.items()))
    return [item for item in dic.items() if item[1] == max_val]

max_pairs({‘a‘: -10, ‘b‘: 5, ‘c‘: 3, ‘d‘: 5})# [(‘b‘, 5), (‘d‘, 5)]

2 字典值最小的键值对列表

def min_pairs(dic):
    if len(dic) == 0:
        return []
    min_val = min(map(lambda v: v[1], dic.items()))
    return [item for item in dic.items() if item[1] == min_val]

min_pairs({}) # []

r = min_pairs({‘a‘: -10, ‘b‘: 5, ‘c‘: 3, ‘d‘: 5})
print(r)  # [(‘b‘, 5), (‘d‘, 5)]

3 合并两个字典

def merge_dict2(dic1, dic2):
    return {**dic1, **dic2}  # python3.5后支持的一行代码实现合并字典

merge_dict({‘a‘: 1, ‘b‘: 2}, {‘c‘: 3})  # {‘a‘: 1, ‘b‘: 2, ‘c‘: 3}

4 求字典前n个最大值

from heapq import nlargest

# 返回字典d前n个最大值对应的键
def topn_dict(d, n):
    return nlargest(n, d, key=lambda k: d[k])

topn_dict({‘a‘: 10, ‘b‘: 8, ‘c‘: 9, ‘d‘: 10}, 3)  # [‘a‘, ‘d‘, ‘c‘]

5 求最小键值对

d={‘a‘:-10,‘b‘:5, ‘c‘:3,‘d‘:5}
min(d.items(),key=lambda x:x[1]) #(‘a‘, -10)

五、集合

1 互为变位词

from collections import Counter
# 检查两个字符串是否 相同字母异序词,简称:互为变位词
def anagram(str1, str2):
    return Counter(str1) == Counter(str2)

anagram(‘eleven+two‘, ‘twelve+one‘)  # True 这是一对神器的变位词
anagram(‘eleven‘, ‘twelve‘)  # False

六、文件操作

1 查找指定文件格式文件

import os

def find_file(work_dir,extension=‘jpg‘):
    lst = []
    for filename in os.listdir(work_dir):
        print(filename)
        splits = os.path.splitext(filename)
        ext = splits[1] # 拿到扩展名
        if ext == ‘.‘+extension:
            lst.append(filename)
    return lst

find_file(‘.‘,‘md‘) # 返回所有目录下的md文件

七、正则和爬虫

1 爬取天气数据并解析温度值

素材来自朋友袁绍

import requests
from lxml import etree
import pandas as pd
import re

url = ‘http://www.weather.com.cn/weather1d/101010100.shtml#input‘
with requests.get(url) as res:
    content = res.content
    html = etree.HTML(content)

通过lxml模块提取值,lxml比beautifulsoup解析在某些场合更高效

location = html.xpath(‘//*[@id="around"]//a[@target="_blank"]/span/text()‘)
temperature = html.xpath(‘//*[@id="around"]/div/ul/li/a/i/text()‘)

结果:

[‘香河‘, ‘涿州‘, ‘唐山‘, ‘沧州‘, ‘天津‘, ‘廊坊‘, ‘太原‘, ‘石家庄‘, ‘涿鹿‘, ‘张家口‘, ‘保定‘, ‘三河‘, ‘北京孔庙‘, ‘北京国子监‘, ‘中国地质博物馆‘, ‘月坛公
园‘, ‘明城墙遗址公园‘, ‘北京市规划展览馆‘, ‘什刹海‘, ‘南锣鼓巷‘, ‘天坛公园‘, ‘北海公园‘, ‘景山公园‘, ‘北京海洋馆‘]

[‘11/-5°C‘, ‘14/-5°C‘, ‘12/-6°C‘, ‘12/-5°C‘, ‘11/-1°C‘, ‘11/-5°C‘, ‘8/-7°C‘, ‘13/-2°C‘, ‘8/-6°C‘, ‘5/-9°C‘, ‘14/-6°C‘, ‘11/-4°C‘, ‘13/-3°C‘
, ‘13/-3°C‘, ‘12/-3°C‘, ‘12/-3°C‘, ‘13/-3°C‘, ‘12/-2°C‘, ‘12/-3°C‘, ‘13/-3°C‘, ‘12/-2°C‘, ‘12/-2°C‘, ‘12/-2°C‘, ‘12/-3°C‘]

df = pd.DataFrame({‘location‘:location, ‘temperature‘:temperature})
print(‘温度列‘)
print(df[‘temperature‘])

正则解析温度值

df[‘high‘] = df[‘temperature‘].apply(lambda x: int(re.match(‘(-?[0-9]*?)/-?[0-9]*?°C‘, x).group(1) ) )
df[‘low‘] = df[‘temperature‘].apply(lambda x: int(re.match(‘-?[0-9]*?/(-?[0-9]*?)°C‘, x).group(1) ) )
print(df)

详细说明子字符创捕获

除了简单地判断是否匹配之外,正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(group)。比如:^(\d{3})-(\d{3,8})$分别定义了两个组,可以直接从匹配的字符串中提取出区号和本地号码

m = re.match(r‘^(\d{3})-(\d{3,8})$‘, ‘010-12345‘)
print(m.group(0))
print(m.group(1))
print(m.group(2))

# 010-12345
# 010
# 12345

如果正则表达式中定义了组,就可以在Match对象上用group()方法提取出子串来。

注意到group(0)永远是原始字符串,group(1)group(2)……表示第1、2、……个子串。

最终结果

Name: temperature, dtype: object
    location temperature  high  low
0         香河     11/-5°C    11   -5
1         涿州     14/-5°C    14   -5
2         唐山     12/-6°C    12   -6
3         沧州     12/-5°C    12   -5
4         天津     11/-1°C    11   -1
5         廊坊     11/-5°C    11   -5
6         太原      8/-7°C     8   -7
7        石家庄     13/-2°C    13   -2
8         涿鹿      8/-6°C     8   -6
9        张家口      5/-9°C     5   -9
10        保定     14/-6°C    14   -6
11        三河     11/-4°C    11   -4
12      北京孔庙     13/-3°C    13   -3
13     北京国子监     13/-3°C    13   -3
14   中国地质博物馆     12/-3°C    12   -3
15      月坛公园     12/-3°C    12   -3
16   明城墙遗址公园     13/-3°C    13   -3
17  北京市规划展览馆     12/-2°C    12   -2
18       什刹海     12/-3°C    12   -3
19      南锣鼓巷     13/-3°C    13   -3
20      天坛公园     12/-2°C    12   -2
21      北海公园     12/-2°C    12   -2
22      景山公园     12/-2°C    12   -2
23     北京海洋馆     12/-3°C    12   -3

2 批量转化驼峰格式

import re
def camel(s):
    s = re.sub(r"(\s|_|-)+", " ", s).title().replace(" ", "")
    return s[0].lower() + s[1:]

# 批量转化
def batch_camel(slist):
    return [camel(s) for s in slist]

batch_camel([‘student_id‘, ‘student\tname‘, ‘student-add‘]) #[‘studentId‘, ‘studentName‘, ‘studentAdd‘]

八、绘图

1 turtle绘制奥运五环图
结果:

?

2 turtle绘制漫天雪花
结果:

?

3 4种不同颜色的色块,它们的颜色真的不同吗?

?

4 词频云图

import hashlib
import pandas as pd
from wordcloud import WordCloud
geo_data=pd.read_excel(r"../data/geo_data.xlsx")
words = ‘,‘.join(x for x in geo_data[‘city‘] if x != []) #筛选出非空列表值
wc = WordCloud(
    background_color="green", #背景颜色"green"绿色
    max_words=100, #显示最大词数
    font_path=‘./fonts/simhei.ttf‘, #显示中文
    min_font_size=5,
    max_font_size=100,
    width=500  #图幅宽度
    )
x = wc.generate(words)
x.to_file(‘../data/geo_data.png‘)

?

八、生成器

1 求斐波那契数列前n项(生成器版)

def fibonacci(n):
    a, b = 1, 1
    for _ in range(n):
        yield a
        a, b = b, a + b

list(fibonacci(5))  # [1, 1, 2, 3, 5]

2 将list等分为子组(生成器版)

from math import ceil

def divide_iter(lst, n):
    if n <= 0:
        yield lst
        return
    i, div = 0, ceil(len(lst) / n)
    while i < n:
        yield lst[i * div: (i + 1) * div]
        i += 1

list(divide_iter([1, 2, 3, 4, 5], 0))  # [[1, 2, 3, 4, 5]]
list(divide_iter([1, 2, 3, 4, 5], 2))  # [[1, 2, 3], [4, 5]]

九、keras

1 Keras入门例子

import numpy as np
from keras.models import Sequential
from keras.layers import Dense

data = np.random.random((1000, 1000))
labels = np.random.randint(2, size=(1000, 1))
model = Sequential()
model.add(Dense(32,
                activation=‘relu‘,
                input_dim=100))
model.add(Dense(1, activation=‘sigmoid‘))
model.compile(optimize=‘rmsprop‘, loss=‘binary_crossentropy‘,
              metrics=[‘accuracy‘])
model.fit(data, labels, epochs=10, batch_size=32)
predictions = model.predict(data)

告别枯燥,60秒学会一个Python小例子。奔着此出发点,我在过去1个月,将平时经常使用的代码段换为小例子,分享出来后受到大家的喜欢。

一、基本操作

1 链式比较

i = 3print(1 < i < 3)  # Falseprint(1 < i <= 3)  # True

2 不用else和if实现计算器

from operator import *

def calculator(a, b, k):    return {        ‘+‘: add,        ‘-‘: sub,        ‘*‘: mul,        ‘/‘: truediv,        ‘**‘: pow    }[k](a, b)

calculator(1, 2, ‘+‘)  # 3calculator(3, 4, ‘**‘)  # 81

3 函数链

from operator import (add, sub)

def add_or_sub(a, b, oper):    return (add if oper == ‘+‘ else sub)(a, b)

add_or_sub(1, 2, ‘-‘)  # -1

4 求字符串的字节长度

def str_byte_len(mystr):    return (len(mystr.encode(‘utf-8‘)))

str_byte_len(‘i love python‘)  # 13(个字节)str_byte_len(‘字符‘)  # 6(个字节)

5 寻找第n次出现位置

def search_n(s, c, n):    size = 0    for i, x in enumerate(s):        if x == c:            size += 1        if size == n:            return i    return -1

print(search_n("fdasadfadf", "a", 3))# 结果为7,正确print(search_n("fdasadfadf", "a", 30))# 结果为-1,正确

6 去掉最高最低求平均

def score_mean(lst):    lst.sort()    lst2=lst[1:(len(lst)-1)]    return round((sum(lst2)/len(lst2)),2)

score_mean([9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]) # 9.07

7 交换元素

def swap(a, b):    return b, a

swap(1, 0)  # (0,1)

二、基础算法

1 二分搜索

def binarySearch(arr, left, right, x):    while left <= right:        mid = int(left + (right - left) / 2); # 找到中间位置。求中点写成(left+right)/2更容易溢出,所以不建议这样写

        # 检查x是否出现在位置mid        if arr[mid] == x:            print(‘found %d 在索引位置%d 处‘ %(x,mid))            return mid

            # 假如x更大,则不可能出现在左半部分        elif arr[mid] < x:            left = mid + 1 #搜索区间变为[mid+1,right]            print(‘区间缩小为[%d,%d]‘ %(mid+1,right))

        elif x<arr[mid]:            right = mid - 1 #搜索区间变为[left,mid-1]            print(‘区间缩小为[%d,%d]‘ %(left,mid-1))

    return -1

2  距离矩阵

x,y = mgrid[0:5,0:5]list(map(lambda xe,ye: [(ex,ey) for ex, ey in zip(xe, ye)], x,y))[[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)], [(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)], [(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)], [(3, 0), (3, 1), (3, 2), (3, 3), (3, 4)], [(4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]]

三、列表

1 打印乘法表

for i in range(1,10):    for j in range(1,i+1):        print(‘{0}*{1}={2}‘.format(j,i,j*i),end="\t")    print()

结果:

1*1=11*2=2   2*2=41*3=3   2*3=6   3*3=91*4=4   2*4=8   3*4=12  4*4=161*5=5   2*5=10  3*5=15  4*5=20  5*5=251*6=6   2*6=12  3*6=18  4*6=24  5*6=30  6*6=361*7=7   2*7=14  3*7=21  4*7=28  5*7=35  6*7=42  7*7=491*8=8   2*8=16  3*8=24  4*8=32  5*8=40  6*8=48  7*8=56  8*8=641*9=9   2*9=18  3*9=27  4*9=36  5*9=45  6*9=54  7*9=63  8*9=72  9*9=81

2 嵌套数组完全展开

from collections.abc import *

def flatten(input_arr, output_arr=None):    if output_arr is None:        output_arr = []    for ele in input_arr:        if isinstance(ele, Iterable): # 判断ele是否可迭代            flatten(ele, output_arr)  # 尾数递归        else:            output_arr.append(ele)    # 产生结果    return output_arr

flatten([[1,2,3],[4,5]], [6,7]) # [6, 7, 1, 2, 3, 4, 5]

3 将list等分为子组

from math import ceil

def divide(lst, size):    if size <= 0:        return [lst]    return [lst[i * size:(i+1)*size] for i in range(0, ceil(len(lst) / size))]

r = divide([1, 3, 5, 7, 9], 2) # [[1, 3], [5, 7], [9]]

4 生成fibonacci序列前n项

def fibonacci(n):    if n <= 1:        return [1]    fib = [1, 1]    while len(fib) < n:        fib.append(fib[len(fib) - 1] + fib[len(fib) - 2])    return fib

fibonacci(5)  # [1, 1, 2, 3, 5]

5 过滤掉各种空值

def filter_false(lst):    return list(filter(bool, lst))

filter_false([None, 0, False, ‘‘, [], ‘ok‘, [1, 2]])# [‘ok‘, [1, 2]]

6 返回列表头元素

def head(lst):    return lst[0] if len(lst) > 0 else None

head([])  # Nonehead([3, 4, 1])  # 3

7 返回列表尾元素

def tail(lst):    return lst[-1] if len(lst) > 0 else None

print(tail([]))  # Noneprint(tail([3, 4, 1]))  # 1

8 对象转换为可迭代类型

from collections.abc import Iterable

def cast_iterable(val):    return val if isinstance(val, Iterable) else [val]

cast_iterable(‘foo‘)# foocast_iterable(12)# [12]cast_iterable({‘foo‘: 12})# {‘foo‘: 12}

9 求更长列表

def max_length(*lst):    return max(*lst, key=lambda v: len(v))

r = max_length([1, 2, 3], [4, 5, 6, 7], [8])# [4, 5, 6, 7]

10 出现最多元素

def max_frequency(lst):    return max(lst, default=‘列表为空‘, key=lambda v: lst.count(v))

lst = [1, 3, 3, 2, 1, 1, 2]max_frequency(lst) # 1 

11 求多个列表的最大值

def max_lists(*lst):    return max(max(*lst, key=lambda v: max(v)))

max_lists([1, 2, 3], [6, 7, 8], [4, 5]) # 8

12 求多个列表的最小值

def min_lists(*lst):    return min(min(*lst, key=lambda v: max(v)))

min_lists([1, 2, 3], [6, 7, 8], [4, 5]) # 1

13 检查list是否有重复元素

def has_duplicates(lst):    return len(lst) == len(set(lst))

x = [1, 1, 2, 2, 3, 2, 3, 4, 5, 6]y = [1, 2, 3, 4, 5]has_duplicates(x)  # Falsehas_duplicates(y)  # True

14 求列表中所有重复元素

from collections import Counter

def find_all_duplicates(lst):    c = Counter(lst)    return list(filter(lambda k: c[k] > 1, c))

find_all_duplicates([1, 2, 2, 3, 3, 3])  # [2,3]

15 列表反转

def reverse(lst):    return lst[::-1]

reverse([1, -2, 3, 4, 1, 2])# [2, 1, 4, 3, -2, 1]

16 浮点数等差数列

def rang(start, stop, n):    start,stop,n = float(‘%.2f‘ % start), float(‘%.2f‘ % stop),int(‘%.d‘ % n)    step = (stop-start)/n    lst = [start]    while n > 0:        start,n = start+step,n-1        lst.append(round((start), 2))    return lst

rang(1, 8, 10) # [1.0, 1.7, 2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, 7.3, 8.0]

四、字典

1 字典值最大的键值对列表

def max_pairs(dic):    if len(dic) == 0:        return dic    max_val = max(map(lambda v: v[1], dic.items()))    return [item for item in dic.items() if item[1] == max_val]

max_pairs({‘a‘: -10, ‘b‘: 5, ‘c‘: 3, ‘d‘: 5})# [(‘b‘, 5), (‘d‘, 5)]

2 字典值最小的键值对列表

def min_pairs(dic):    if len(dic) == 0:        return []    min_val = min(map(lambda v: v[1], dic.items()))    return [item for item in dic.items() if item[1] == min_val]

min_pairs({}) # []

r = min_pairs({‘a‘: -10, ‘b‘: 5, ‘c‘: 3, ‘d‘: 5})print(r)  # [(‘b‘, 5), (‘d‘, 5)]

3 合并两个字典

def merge_dict2(dic1, dic2):    return {**dic1, **dic2}  # python3.5后支持的一行代码实现合并字典

merge_dict({‘a‘: 1, ‘b‘: 2}, {‘c‘: 3})  # {‘a‘: 1, ‘b‘: 2, ‘c‘: 3}

4 求字典前n个最大值

from heapq import nlargest

# 返回字典d前n个最大值对应的键def topn_dict(d, n):    return nlargest(n, d, key=lambda k: d[k])

topn_dict({‘a‘: 10, ‘b‘: 8, ‘c‘: 9, ‘d‘: 10}, 3)  # [‘a‘, ‘d‘, ‘c‘]

5 求最小键值对

d={‘a‘:-10,‘b‘:5, ‘c‘:3,‘d‘:5}min(d.items(),key=lambda x:x[1]) #(‘a‘, -10)

五、集合

1 互为变位词

from collections import Counter# 检查两个字符串是否 相同字母异序词,简称:互为变位词def anagram(str1, str2):    return Counter(str1) == Counter(str2)

anagram(‘eleven+two‘, ‘twelve+one‘)  # True 这是一对神器的变位词anagram(‘eleven‘, ‘twelve‘)  # False

六、文件操作

1 查找指定文件格式文件

import os

def find_file(work_dir,extension=‘jpg‘):    lst = []    for filename in os.listdir(work_dir):        print(filename)        splits = os.path.splitext(filename)        ext = splits[1] # 拿到扩展名        if ext == ‘.‘+extension:            lst.append(filename)    return lst

find_file(‘.‘,‘md‘) # 返回所有目录下的md文件

七、正则和爬虫

1 爬取天气数据并解析温度值

素材来自朋友袁绍

import requestsfrom lxml import etreeimport pandas as pdimport re

url = ‘http://www.weather.com.cn/weather1d/101010100.shtml#input‘with requests.get(url) as res:    content = res.content    html = etree.HTML(content)

通过lxml模块提取值,lxml比beautifulsoup解析在某些场合更高效

location = html.xpath(‘//*[@id="around"]//a[@target="_blank"]/span/text()‘)temperature = html.xpath(‘//*[@id="around"]/div/ul/li/a/i/text()‘)

结果:

[‘香河‘, ‘涿州‘, ‘唐山‘, ‘沧州‘, ‘天津‘, ‘廊坊‘, ‘太原‘, ‘石家庄‘, ‘涿鹿‘, ‘张家口‘, ‘保定‘, ‘三河‘, ‘北京孔庙‘, ‘北京国子监‘, ‘中国地质博物馆‘, ‘月坛公园‘, ‘明城墙遗址公园‘, ‘北京市规划展览馆‘, ‘什刹海‘, ‘南锣鼓巷‘, ‘天坛公园‘, ‘北海公园‘, ‘景山公园‘, ‘北京海洋馆‘]

[‘11/-5°C‘, ‘14/-5°C‘, ‘12/-6°C‘, ‘12/-5°C‘, ‘11/-1°C‘, ‘11/-5°C‘, ‘8/-7°C‘, ‘13/-2°C‘, ‘8/-6°C‘, ‘5/-9°C‘, ‘14/-6°C‘, ‘11/-4°C‘, ‘13/-3°C‘, ‘13/-3°C‘, ‘12/-3°C‘, ‘12/-3°C‘, ‘13/-3°C‘, ‘12/-2°C‘, ‘12/-3°C‘, ‘13/-3°C‘, ‘12/-2°C‘, ‘12/-2°C‘, ‘12/-2°C‘, ‘12/-3°C‘]
df = pd.DataFrame({‘location‘:location, ‘temperature‘:temperature})print(‘温度列‘)print(df[‘temperature‘])

正则解析温度值

df[‘high‘] = df[‘temperature‘].apply(lambda x: int(re.match(‘(-?[0-9]*?)/-?[0-9]*?°C‘, x).group(1) ) )df[‘low‘] = df[‘temperature‘].apply(lambda x: int(re.match(‘-?[0-9]*?/(-?[0-9]*?)°C‘, x).group(1) ) )print(df)

详细说明子字符创捕获

除了简单地判断是否匹配之外,正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(group)。比如:^(\d{3})-(\d{3,8})$分别定义了两个组,可以直接从匹配的字符串中提取出区号和本地号码

m = re.match(r‘^(\d{3})-(\d{3,8})$‘, ‘010-12345‘)print(m.group(0))print(m.group(1))print(m.group(2))

# 010-12345# 010# 12345

如果正则表达式中定义了组,就可以在Match对象上用group()方法提取出子串来。

注意到group(0)永远是原始字符串,group(1)group(2)……表示第1、2、……个子串。

最终结果

Name: temperature, dtype: object    location temperature  high  low0         香河     11/-5°C    11   -51         涿州     14/-5°C    14   -52         唐山     12/-6°C    12   -63         沧州     12/-5°C    12   -54         天津     11/-1°C    11   -15         廊坊     11/-5°C    11   -56         太原      8/-7°C     8   -77        石家庄     13/-2°C    13   -28         涿鹿      8/-6°C     8   -69        张家口      5/-9°C     5   -910        保定     14/-6°C    14   -611        三河     11/-4°C    11   -412      北京孔庙     13/-3°C    13   -313     北京国子监     13/-3°C    13   -314   中国地质博物馆     12/-3°C    12   -315      月坛公园     12/-3°C    12   -316   明城墙遗址公园     13/-3°C    13   -317  北京市规划展览馆     12/-2°C    12   -218       什刹海     12/-3°C    12   -319      南锣鼓巷     13/-3°C    13   -320      天坛公园     12/-2°C    12   -221      北海公园     12/-2°C    12   -222      景山公园     12/-2°C    12   -223     北京海洋馆     12/-3°C    12   -3

2 批量转化驼峰格式

import redef camel(s):    s = re.sub(r"(\s|_|-)+", " ", s).title().replace(" ", "")    return s[0].lower() + s[1:]

# 批量转化def batch_camel(slist):    return [camel(s) for s in slist]

batch_camel([‘student_id‘, ‘student\tname‘, ‘student-add‘]) #[‘studentId‘, ‘studentName‘, ‘studentAdd‘]

八、绘图

1 turtle绘制奥运五环图
结果:

2 turtle绘制漫天雪花
结果:

3 4种不同颜色的色块,它们的颜色真的不同吗?

4 词频云图

import hashlibimport pandas as pdfrom wordcloud import WordCloudgeo_data=pd.read_excel(r"../data/geo_data.xlsx")words = ‘,‘.join(x for x in geo_data[‘city‘] if x != []) #筛选出非空列表值wc = WordCloud(    background_color="green", #背景颜色"green"绿色    max_words=100, #显示最大词数    font_path=‘./fonts/simhei.ttf‘, #显示中文    min_font_size=5,    max_font_size=100,    width=500  #图幅宽度    )x = wc.generate(words)x.to_file(‘../data/geo_data.png‘)

八、生成器

1 求斐波那契数列前n项(生成器版)

def fibonacci(n):    a, b = 1, 1    for _ in range(n):        yield a        a, b = b, a + b

list(fibonacci(5))  # [1, 1, 2, 3, 5]

2 将list等分为子组(生成器版)

from math import ceil

def divide_iter(lst, n):    if n <= 0:        yield lst        return    i, div = 0, ceil(len(lst) / n)    while i < n:        yield lst[i * div: (i + 1) * div]        i += 1

list(divide_iter([1, 2, 3, 4, 5], 0))  # [[1, 2, 3, 4, 5]]list(divide_iter([1, 2, 3, 4, 5], 2))  # [[1, 2, 3], [4, 5]]

九、keras

1 Keras入门例子

import numpy as npfrom keras.models import Sequentialfrom keras.layers import Dense

data = np.random.random((1000, 1000))labels = np.random.randint(2, size=(1000, 1))model = Sequential()model.add(Dense(32,                activation=‘relu‘,                input_dim=100))model.add(Dense(1, activation=‘sigmoid‘))model.compile(optimize=‘rmsprop‘, loss=‘binary_crossentropy‘,              metrics=[‘accuracy‘])model.fit(data, labels, epochs=10, batch_size=32)predictions = model.predict(data)

原文地址:https://www.cnblogs.com/7758520lzy/p/12145532.html

时间: 2024-10-12 09:33:26

这42个Python小例子,太走心~的相关文章

python小例子之删除文本标签

Python 练习册,每天一个小程序 By 白熊花田(http://blog.csdn.net/whiterbear) 转载需注明出处,谢谢. 问题描述: 我们在网上下载或者复制别人代码的时候经常会遇到下载的代码中包含行数标签的情况.如下图: 这些代码中包含着行数如1.,2.等,如果我们想直接运行或者copy代码需要自己手动的删除这些标签.既然学了python,我们写一段脚本来处理它吧. 思路分析: 首先,我们逐行的读取文本. 利用正则表达式,可以顺利地匹配出所有的这些标签以及后面跟随的"\t&

Python小例子(判断质数)

只能被自己或者1整除的数为质数 1 num = int(input('请输入一个数:')) 2 if num > 1: 3 # 查看因子 4 for i in range(2, num): 5 if (num % i) == 0: 6 print(num, "不是质素") 7 print(i, "乘以", num // i, "是", num) 8 break 9 else: 10 print(num, "是质素") 1

Python小例子

import urllib.request as request import urllib.parse as parse import string print(""" +++++++++++++++++++++++ 数据挖掘哪家强? 北京朝阳找龙道! +++++++++++++++++=++++ """) def baidu_tieba(url, begin_page, end_page): for i in range(begin_page

python速成第二篇(小爬虫+文件操作+socket网络通信小例子+oop编程)

大家好,由于前天熬夜写完第一篇博客,然后昨天又是没休息好,昨天也就不想更新博客,就只是看了会资料就早点休息了,今天补上我这两天的所学,先记录一笔.我发现有时候我看的话会比较敷衍,而如果我写出来(无论写到笔记本中还是博客中,我都有不同的感觉)就会有不同的想法,我看书或者看资料有时候感觉就是有一种惰性,得过且过的感觉,有时候一个知识想不通道不明,想了一会儿,就会找借口给自己说这个知识不重要,不需要太纠结了,还是去看下一个吧,然后就如此往复下去,学习就会有漏洞,所以这更加坚定了我写博客来记录的想法.

python try小例子

#!/usr/bin/python import telnetlib import socket try: tn=telnetlib.Telnet('10.67.21.29',60000) except socket.error, e: print e exit(1) tn.set_debuglevel(1) tn.write('quit'+'\n') print 'ok' socket.error为错误类型 e为对象 python try小例子,布布扣,bubuko.com

[Python]Python 使用 for 循环的小例子

[Python]Python 使用 for 循环的小例子: In [7]: for i in range(5): ...: print "xxxx" ...: print "yyyy" ...: xxxxyyyyxxxxyyyyxxxxyyyyxxxxyyyyxxxxyyyy

Python小程序练习二之装饰器小例子

Python小程序练习二之装饰器小例子 装饰器: 装饰器实际上就是为了给某程序增添功能,但该程序已经上线或已经被使用,那么就不能大批量的修改源代码,这样是不科学的也是不现实的,因为就产生了装饰器,使得其满足: 1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 那么根据需求,同时满足了这两点原则,这才是我们的目的. 装饰器的原则组成: < 函数+实参高阶函数+返回值高阶函数+嵌套函数+语法糖 = 装饰器 > 错误例子: 1.1Decorators.py 1 # The aut

简述人脸特异性识别&amp;&amp;一个基于LBP和SVM的人脸识别小例子

原谅我用图片,MAC在Safari里给文章进行图文排版太麻烦啦~ 本文适合初入计算机视觉和模式识别方向的同学们观看~ 文章写得匆忙,加上博主所知甚少,有不妥和勘误请指出并多多包涵. 本文Demo的代码由HZK编写,特征点由月神和YK选择和训练. 转载请注明 copyleft by sciencefans, 2014 为了方便大家学习,附上高维LBP的核心代码 1 ################################################### 2 # 3 # 4 # NO

python 小技巧

英文出处:sahandsaba.欢迎加入翻译组. 从我开始学习python的时候,我就开始自己总结一个python小技巧的集合.后来当我什么时候在Stack Overflow或者在某个开源软件里看到一段很酷代码的时候,我就很惊讶:原来还能这么做!,当时我会努力的自己尝试一下这段代码,直到我懂了它的整体思路以后,我就把这段代码加到我的集合里.这篇博客其实就是这个集合整理后一部分的公开亮相.如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发现一些你不知道的新