线程池实例:使用Executors和ThreadPoolExecutor

线程池负责管理工作线程,包含一个等待执行的任务队列。线程池的任务队列是一个Runnable集合,工作线程负责从任务队列中取出并执行Runnable对象。

java.util.concurrent.executors 提供了 java.util.concurrent.executor 接口的一个Java实现,可以创建线程池。下面是一个简单示例:

首先创建一个Runable 类:

WorkerThread.java

package com.journaldev.threadpool;

public class WorkerThread implements Runnable {

    private String command;

    public WorkerThread(String s){

        this.command=s;

    }

    @Override

    public void run() {

        System.out.println(Thread.currentThread().getName()+" Start. Command = "+command);

        processCommand();

        System.out.println(Thread.currentThread().getName()+" End.");

    }

    private void processCommand() {

        try {

            Thread.sleep(5000);

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

    }

    @Override

    public String toString(){

        return this.command;

    }

}
package com.journaldev.threadpool;

public class WorkerThread implements Runnable {

    private String command;

    public WorkerThread(String s){

        this.command=s;

    }

    @Override

    public void run() {

        System.out.println(Thread.currentThread().getName()+" Start. Command = "+command);

        processCommand();

        System.out.println(Thread.currentThread().getName()+" End.");

    }

    private void processCommand() {

        try {

            Thread.sleep(5000);

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

    }

    @Override

    public String toString(){

        return this.command;

    }

}

下面是一个测试程序,从 Executors 框架中创建固定大小的线程池:

SimpleThreadPool.java

package com.journaldev.threadpool;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class SimpleThreadPool {

    public static void main(String[] args) {

        ExecutorService executor = Executors.newFixedThreadPool(5);

        for (int i = 0; i < 10; i++) {

            Runnable worker = new WorkerThread("" + i);

            executor.execute(worker);

          }

        executor.shutdown();

        while (!executor.isTerminated()) {

        }

        System.out.println("Finished all threads");

    }

}
 

在上面的程序中,我们创建了包含5个工作线程的固定大小线程池。然后,我们向线程池提交10个任务。由于线程池的大小是5,因此首先会启动5个工作线程,其他任务将进行等待。一旦有任务结束,工作线程会从等待队列中挑选下一个任务并开始执行。

以上程序的输出结果如下:

pool-1-thread-2 Start. Command = 1

pool-1-thread-4 Start. Command = 3

pool-1-thread-1 Start. Command = 0

pool-1-thread-3 Start. Command = 2

pool-1-thread-5 Start. Command = 4

pool-1-thread-4 End.

pool-1-thread-5 End.

pool-1-thread-1 End.

pool-1-thread-3 End.

pool-1-thread-3 Start. Command = 8

pool-1-thread-2 End.

pool-1-thread-2 Start. Command = 9

pool-1-thread-1 Start. Command = 7

pool-1-thread-5 Start. Command = 6

pool-1-thread-4 Start. Command = 5

pool-1-thread-2 End.

pool-1-thread-4 End.

pool-1-thread-3 End.

pool-1-thread-5 End.

pool-1-thread-1 End.

Finished all threads

 

从输出结果看,线程池中有五个名为“pool-1-thread-1”…“pool-1-thread-5”的工作线程负责执行提交的任务。

Executors 类使用 ExecutorService  提供了一个 ThreadPoolExecutor 的简单实现,但 ThreadPoolExecutor 提供的功能远不止这些。我们可以指定创建 ThreadPoolExecutor 实例时活跃的线程数,并且可以限制线程池的大小,还可以创建自己的 RejectedExecutionHandler 实现来处理不适合放在工作队列里的任务。

下面是一个 RejectedExecutionHandler 接口的自定义实现:

RejectedExecutionHandlerImpl.java

package com.journaldev.threadpool;

import java.util.concurrent.RejectedExecutionHandler;

import java.util.concurrent.ThreadPoolExecutor;

public class RejectedExecutionHandlerImpl implements RejectedExecutionHandler {

    @Override

    public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {

        System.out.println(r.toString() + " is rejected");

    }

}

ThreadPoolExecutor 提供了一些方法,可以查看执行状态、线程池大小、活动线程数和任务数。所以,我通过一个监视线程在固定间隔输出执行信息。

MyMonitorThread.java

package com.journaldev.threadpool;

import java.util.concurrent.ThreadPoolExecutor;

public class MyMonitorThread implements Runnable

{

    private ThreadPoolExecutor executor;

    private int seconds;

    private boolean run=true;

    public MyMonitorThread(ThreadPoolExecutor executor, int delay)

    {

        this.executor = executor;

        this.seconds=delay;

    }

    public void shutdown(){

        this.run=false;

    }

    @Override

    public void run()

    {

        while(run){

                System.out.println(

                    String.format("[monitor] [%d/%d] Active: %d, Completed: %d, Task: %d, isShutdown: %s, isTerminated: %s",

                        this.executor.getPoolSize(),

                        this.executor.getCorePoolSize(),

                        this.executor.getActiveCount(),

                        this.executor.getCompletedTaskCount(),

                        this.executor.getTaskCount(),

                        this.executor.isShutdown(),

                        this.executor.isTerminated()));

                try {

                    Thread.sleep(seconds*1000);

                } catch (InterruptedException e) {

                    e.printStackTrace();

                }

        }

    }

}
 

下面是使用 ThreadPoolExecutor 的线程池实现示例:

WorkerPool.java

package com.journaldev.threadpool;

import java.util.concurrent.ArrayBlockingQueue;

import java.util.concurrent.Executors;

import java.util.concurrent.ThreadFactory;

import java.util.concurrent.ThreadPoolExecutor;

import java.util.concurrent.TimeUnit;

public class WorkerPool {

    public static void main(String args[]) throws InterruptedException{

        //RejectedExecutionHandler implementation

        RejectedExecutionHandlerImpl rejectionHandler = new RejectedExecutionHandlerImpl();

        //Get the ThreadFactory implementation to use

        ThreadFactory threadFactory = Executors.defaultThreadFactory();

        //creating the ThreadPoolExecutor

        ThreadPoolExecutor executorPool = new ThreadPoolExecutor(2, 4, 10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(2), threadFactory, rejectionHandler);

        //start the monitoring thread

        MyMonitorThread monitor = new MyMonitorThread(executorPool, 3);

        Thread monitorThread = new Thread(monitor);

        monitorThread.start();

        //submit work to the thread pool

        for(int i=0; i<10; i++){

            executorPool.execute(new WorkerThread("cmd"+i));

        }

        Thread.sleep(30000);

        //shut down the pool

        executorPool.shutdown();

        //shut down the monitor thread

        Thread.sleep(5000);

        monitor.shutdown();

    }

}

 

请注意:在初始化 ThreadPoolExecutor 时,初始线程池大小设为2、最大值设为4、工作队列大小设为2。所以,如果当前有4个任务正在运行而此时又有新任务提交,工作队列将只存储2个任务和其他任务将交由RejectedExecutionHandlerImpl 处理。

程序执行的结果如下,确认了上面的结论:

pool-1-thread-1 Start. Command = cmd0

pool-1-thread-4 Start. Command = cmd5

cmd6 is rejected

pool-1-thread-3 Start. Command = cmd4

pool-1-thread-2 Start. Command = cmd1

cmd7 is rejected

cmd8 is rejected

cmd9 is rejected

[monitor] [0/2] Active: 4, Completed: 0, Task: 6, isShutdown: false, isTerminated: false

[monitor] [4/2] Active: 4, Completed: 0, Task: 6, isShutdown: false, isTerminated: false

pool-1-thread-4 End.

pool-1-thread-1 End.

pool-1-thread-2 End.

pool-1-thread-3 End.

pool-1-thread-1 Start. Command = cmd3

pool-1-thread-4 Start. Command = cmd2

[monitor] [4/2] Active: 2, Completed: 4, Task: 6, isShutdown: false, isTerminated: false

[monitor] [4/2] Active: 2, Completed: 4, Task: 6, isShutdown: false, isTerminated: false

pool-1-thread-1 End.

pool-1-thread-4 End.

[monitor] [4/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false

[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false

[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false

[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false

[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false

[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false

[monitor] [0/2] Active: 0, Completed: 6, Task: 6, isShutdown: true, isTerminated: true

[monitor] [0/2] Active: 0, Completed: 6, Task: 6, isShutdown: true, isTerminated: true

 

请注意活跃线程、已完成线程和任务完成总数的变化。我们可以调用 shutdown() 结束所有已提交任务并终止线程池。

如果希望延迟执行或定期运行任务,那么可以使用 ScheduledThreadPoolExecutor 类。要了解更多,请参见Java Schedule Thread Pool Executor

原文链接: journaldev    翻译: ImportNew.com - 彭秦进 译文链接: http://www.importnew.com/8542.html

时间: 2024-10-08 13:22:59

线程池实例:使用Executors和ThreadPoolExecutor的相关文章

线程池不使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式

线程池不使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险.说明: Executors 返回的线程池对象的弊端如下:1) FixedThreadPool 和 SingleThreadPool :允许的请求队列长度为 Integer.MAX_VALUE ,可能会堆积大量的请求,从而导致 OOM .2) CachedThreadPool 和 ScheduledThreadPool :允许的创建

Java学习(十):Java线程池实例

线程池可以解决两个不同问题:由于减少了每个任务调用的开销,它们通常可以在执行大量异步任务时提供增强的性能,并且还可以提供绑定和管理资源(包括执行任务集时使用的线程)的方法.每个 ThreadPoolExecutor 还维护着一些基本的统计数据,如完成的任务数. Java常用的线程池有四种.Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收).Executors.newFixedThreadPool(int)(固定大小线程池).Executors.ne

JAVA四种线程池实例

1.new Thread的弊端 执行一个异步任务你还只是如下new Thread吗? Java 1 2 3 4 5 6 7 new Thread(new Runnable() { @Override public void run() { // TODO Auto-generated method stub } }).start(); 那你就out太多了,new Thread的弊端如下: a. 每次new Thread新建对象性能差. b. 线程缺乏统一管理,可能无限制新建线程,相互之间竞争,及

java线程池实例

目的         了解线程池的知识后,写个线程池实例,熟悉多线程开发,建议看jdk线程池源码,跟大师比,才知道差距啊O(∩_∩)O 线程池类 1 package thread.pool2; 2 3 import java.util.LinkedList; 4 5 public class ThreadPool { 6 //最大线程数 7 private int maxCapacity; 8 //初始线程数 9 private int initCapacity; 10 //当前线程数 11 p

003-多线程-JUC线程池-几种特殊的ThreadPoolExecutor【newFixedThreadPool、newCachedThreadPool、newSingleThreadExecutor、newScheduledThreadPool】

一.概述 在java doc中,并不提倡我们直接使用ThreadPoolExecutor,而是使用Executors类中提供的几个静态方法来创建线程池: 以下方法是Executors下的静态方法,Executors中所定义的 Executor.ExecutorService.ScheduledExecutorService.ThreadFactory 和 Callable 类的工厂和实用方法. Executors只是一个工厂类,它所有的方法返回的都是ThreadPoolExecutor.Sche

并发包的线程池第二篇--Executors的构造

上一篇讲述了ThreadPoolExecutor的执行过程,我们也能看出来一个很明显的问题:这个线程池的构造函数比较复杂,对于不十分理解其运作原理的程序员,自己构造它可能体现和想象中不一样的行为.比如阻塞队列放什么,corePoolSize怎么设置等等. 所以和Math这种工具类一样,并发包也提供了一种工具类:Executors. 首先这个工具类的作用就是:提供静态方法帮你构造不同的线程池.那么先分析一下它的设计模式: 1,静态工厂方法模式,静态方法帮你构造线程池. 2,外观模式,用一个简单的接

Linux C++线程池实例

想做一个多线程服务器测试程序,因此参考了github的一些实例,然后自己动手写了类似来加深理解. 目前了解的线程池实现有2种思路: 第一种: 主进程创建一定数量的线程,并将其全部挂起,此时线程状态为idle,并将running态计数为0,等到任务可以执行了,就唤醒线程,此时线程状态为running,计数增加,如果计数达到最大线程数,就再创建一组空闲线程,等待新任务,上一组线程执行完退出,如此交替. 第二种: 采用生成者-消费者模式,主进程作为生成者,创建FIFO队列,在任务队列尾部添加任务,线程

Java newFixedThreadPool线程池实例及讲解

闲话不多说,直接上代码. <span style="font-size:18px;">import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class MyThreadPool { private ExecutorService exe; private static final int POOL_SIZE = 4; public MyThread

Java并发编程:线程池 - 实例

代码块: 1 public class test { 2 public static void main(String[] args) { 3 test t = new test(); 4 ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 200, 5 TimeUnit.MILLISECONDS, new LinkedBlockingDeque<Runnable>(5)); 6 7 for (int i = 1; i <