Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes 2469135798
#include<iostream> #include<string> using namespace std; int main() { int i = 0; int j = 0; int len; int temp; string num; //判断是否为输入的副本 bool is_dup = true; int judge[20]; //保存输出结果 int result[21]; //保存进位 int counter[20]; cin >> num; len = num.length(); for (i = 0; i < 20; i++) { counter[i] = 0; judge[i] = 0; } //计算输出结果 for (i = len - 1; i >= 0; i--) { temp = (num[i] - ‘0‘); judge[temp]++; temp = temp * 2 + counter[i]; result[j++] = temp % 10; if (i != 0) counter[i - 1] = temp / 10; else { result[j++] = temp / 10; } } if (result[j - 1] != 0) len = j; for (i = 0; i < len; i++) { judge[result[i]]--; } for (i = 0; i < 10; i++) { if (judge[i] != 0) { is_dup = false; } } if (is_dup) cout << "Yes" << endl; else cout << "No" << endl; for (j = len - 1; j >= 0; j--) { cout << result[j]; } return 0; }