numpy中的inf

numpy中的inf表示一个无限大的正数

import numpy
x =  numpy.inf
x>9999999999999999999

结果为:

True
时间: 2024-10-26 12:39:04

numpy中的inf的相关文章

numpy中的matrix和array

Preface 在相关聚类算法的实现过程中,用python语言实现,会经常出现array和matrix的混淆,这里做个总结. array数组 numpy中最基本(默认)的类型是array,他的相关操作都是按元素操作的即用作数值计算当中(按元素操作有+,-,,/,*等).相乘举例: from numpy import * >>> a=array([1,2]) >>> a array([1, 2]) >>> b=array([2,3]) >>&

Numpy中使用矩阵

http://blog.csdn.net/pipisorry/article/details/39088003 Numpy是Python中的一个矩阵计算包,功能类似于MATLAB的矩阵计算. 具体参见http://www.numpy.org/.安装Pythonxy时已经包含了numpy包及其依赖包. (1) 定义矩阵 >>> from numpy import * >>> a = array([[1,2.2,3],[4,5,6]]) >>> a.ndi

[笔记]numpy中的tile与kron的用法

numpy中提供了不少数学中矩阵的运算.构造函数. 闭上眼睛想一想,发现其中常用的也就是那么几个:cos, sin, mean, dot, max,min, outer,argsort,ones,zeros,arrange,reshape,fft---等. 想了半天,可以也不超过30个左右常用函数. 但是numpy的确博大精深:查看文档发现有大概586个方法或属性! 今天,我就记录一下numpy中,矩阵运算tile与kron的用处之一吧. 确切的讲,是谈论的在向量化运算方面的用处. 记得高等代数

numpy中的ndarray方法和属性

原文地址 NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数组,而这个一维数组中每个元素又是一个一维数组.所以这个一维数组就是NumPy中的轴(axes),而轴的数量--秩,就是数组的维数. Numpy库中的矩阵模块为ndarray对象,有很多属性:T,data, dtype,flags,flat,imag,real,size, itemsize,

numpy中matrix的特殊属性

一.matrix特殊属性解释 numpy中matrix有下列的特殊属性,使得矩阵计算更加容易 摘自 NumPy Reference Release 1.8.1 1.1 The N-dimensional array (ndarray) An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. 摘自 NumPy Reference Release 1.9.1

Numpy中的flatten是按照什么方式进行工作。

a = [[[1,2],[3,4]],[[5,6],[7,8]]] a = np.ndarray(a) array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) type(a) numpy.ndarray a.flatten() array([1, 2, 3, 4, 5, 6, 7, 8]) 从上面可以 看出,numpy中的flatten是按照行进行,在按照列,最后按照通道. 就这样子

Numpy中Meshgrid函数介绍及2种应用场景

近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法. Meshgrid函数的基本用法 在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度.可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格.用法: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x)与[X,Y]=meshg

Numpy 中tile(A, reps)方法

官方文档: 个人理解: 返回值 ndarray,该函数是通过reps重复A后得到一个多位数组, 有点绕... 参数 A几乎可以是全体类型, array, list , tuple, dict, matrix, int, long ,str, bool 等等 reps,类型也很多, array, tuple, list, dict ,int ,long, bool 但是不管怎样都必须是 "一维数组(不一定是数组, 这里说成类一维数组)" , 如[1,2,3,4] , (1,2,3)或 3

Numpy中数据的常用的保存与读取方法

Numpy中数据的常用的保存与读取方法 小书匠 深度学习 文章目录: 1.保存为二进制文件(.npy/.npz) numpy.save numpy.savez numpy.savez_compressed 2.保存到文本文件 numpy.savetxt numpy.loadtxt 在经常性读取大量的数值文件时(比如深度学习训练数据),可以考虑现将数据存储为Numpy格式,然后直接使用Numpy去读取,速度相比为转化前快很多. 下面就常用的保存数据到二进制文件和保存数据到文本文件进行介绍: 1.保