【转】博弈—SG函数

转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/

   http://blog.csdn.net/xiaofengcanyuexj/article/details/17119705

SG函数

“Sprague-Grundy函数”

我们将面对更多与Nim游戏有关的变种,还会看到Nim游戏的a1^a2^...^an这个值更广泛的意义。

上面的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方法。但如果把Nim的规则略加改变,你还能很快找出必胜策略吗?比如说:有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……这时看上去问题复杂了很多,但相信你如果掌握了本节的内容,类似的千变万化的问题都是不成问题的。

现在我们来研究一个看上去似乎更为一般的游戏:给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下面我们就在有向无环图的顶点上定义Sprague-Garundy函数。

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。

来看一下SG函数的性质。

1、所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。

2、对于一个g(x)=0的顶点x,它的所有后继y都满足g(y)!=0

3、对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。

以上这三句话表明,顶点x所代表的postion是P-position(先手胜为N局面,后手胜为P局面)当且仅当g(x)=0。我们通过计算有向无环图的每个顶点的SG值,就可以对每种局面找到必胜策略了。但SG函数的用途远没有这样简单。如果将有向图游戏变复杂一点,比如说,有向图上并不是只有一枚棋子,而是有n枚棋子,每次可以任选一颗进行移动,这时,怎样找到必胜策略呢?

让我们再来考虑一下顶点的SG值的意义。当g(x)=k时,表明对于任意一个0<=i<k,都存在x的一个后继y满足g(y)=i。也就是说,当某枚棋子的SG值是k时,我们可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。不知道你能不能根据这个联想到Nim游戏,Nim游戏的规则就是:每次选择一堆数量为k的石子,可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。这表明,如果将n枚棋子所在的顶点的SG值看作n堆相应数量的石子,那么这个Nim游戏的每个必胜策略都对应于原来这n枚棋子的必胜策略!

对于n个棋子,设它们对应的顶点的SG值分别为(a1,a2,...,an),再设局面(a1,a2,...,an)时的Nim游戏的一种必胜策略是把ai变成k,那么原游戏的一种必胜策略就是把第i枚棋子移动到一个SG值为k的顶点。这听上去有点过于神奇——怎么绕了一圈又回到Nim游戏上了。

其实我们还是只要证明这种多棋子的有向图游戏的局面是P-position当且仅当所有棋子所在的位置的SG函数的异或为0。这个证明与上节的Bouton‘s Theorem几乎是完全相同的,只需要适当的改几个名词就行了。

刚才,我为了使问题看上去更容易一些,认为n枚棋子是在一个有向图上移动。但如果不是在一个有向图上,而是每个棋子在一个有向图上,每次可以任选一个棋子(也就是任选一个有向图)进行移动,这样也不会给结论带来任何变化。

所以我们可以定义有向图游戏的和(Sum of Graph Games):设G1、G2、……、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和(Sum),游戏G的移动规则是:任选一个子游戏Gi并移动上面的棋子。Sprague-Grundy Theorem就是:g(G)=g(G1)^g(G2)^...^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。

再考虑在本文一开头的一句话:任何一个ICG都可以抽象成一个有向图游戏。所以“SG函数”和“游戏的和”的概念就不是局限于有向图游戏。我们给每个ICG的每个position定义SG值,也可以定义n个ICG的和。所以说当我们面对由n个游戏组合成的一个游戏时,只需对于每个游戏找出求它的每个局面的SG值的方法,就可以把这些SG值全部看成Nim的石子堆,然后依照找Nim的必胜策略的方法来找这个游戏的必胜策略了!

回到本文开头的问题。有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……我们可以把它看作3个子游戏,第1个子游戏只有一堆石子,每次可以取1、2、3颗,很容易看出x颗石子的局面的SG值是x%4。第2个子游戏也是只有一堆石子,每次可以取奇数颗,经过简单的画图可以知道这个游戏有x颗石子时的SG值是x%2。第3个游戏有n-2堆石子,就是一个Nim游戏。对于原游戏的每个局面,把三个子游戏的SG值异或一下就得到了整个游戏的SG值,然后就可以根据这个SG值判断是否有必胜策略以及做出决策了。其实看作3个子游戏还是保守了些,干脆看作n个子游戏,其中第1、2个子游戏如上所述,第3个及以后的子游戏都是“1堆石子,每次取几颗都可以”,称为“任取石子游戏”,这个超简单的游戏有x颗石子的SG值显然就是x。其实,n堆石子的Nim游戏本身不就是n个“任取石子游戏”的和吗?

所以,

对于我们来说,SG函数与“游戏的和”的概念不是让我们去组合、制造稀奇古怪的游戏,而是把遇到的看上去有些复杂的游戏试图分成若干个子游戏,对于每个比原游戏简化很多的子游戏找出它的SG函数,然后全部异或起来就得到了原游戏的SG函数,就可以解决原游戏了。

暴力枚举法

 1 //f[]:可以取走的石子个数
 2 //sg[]:0~n的SG函数值
 3 //hash[]:mex{}
 4 int f[N],sg[N],hash[N];
 5 void getSG(int n)
 6 {
 7     int i,j;
 8     memset(sg,0,sizeof(sg));
 9     for(i=1;i<=n;i++)
10     {
11         memset(hash,0,sizeof(hash));
12         for(j=1;f[j]<=i;j++)
13             hash[sg[i-f[j]]]=1;
14         for(j=0;j<=n;j++)    //求mes{}中未出现的最小的非负整数
15         {
16             if(hash[j]==0)
17             {
18                 sg[i]=j;
19                 break;
20             }
21         }
22     }
23 }

记忆化搜索法

 1 //注意 S数组要按从小到大排序 SG函数要初始化为-1 对于每个集合只需初始化1遍
 2 //n是集合s的大小 S[i]是定义的特殊取法规则的数组
 3 int s[110],sg[10010],n;
 4 int SG_dfs(int x)
 5 {
 6     int i;
 7     if(sg[x]!=-1)
 8         return sg[x];
 9     bool vis[110];
10     memset(vis,0,sizeof(vis));
11     for(i=0;i<n;i++)
12     {
13         if(x>=s[i])
14         {
15             SG_dfs(x-s[i]);
16             vis[sg[x-s[i]]]=1;
17         }
18     }
19     int e;
20     for(i=0;;i++)
21         if(!vis[i])
22         {
23             e=i;
24             break;
25         }
26     return sg[x]=e;
27 }

时间: 2024-11-05 21:42:43

【转】博弈—SG函数的相关文章

UVA 10561 - Treblecross(博弈SG函数)

UVA 10561 - Treblecross 题目链接 题意:给定一个串,上面有'X'和'.',可以在'.'的位置放X,谁先放出3个'X'就赢了,求先手必胜的策略 思路:SG函数,每个串要是上面有一个X,周围的4个位置就是禁区了(放下去必败),所以可以以X分为几个子游戏去求SG函数的异或和进行判断,至于求策略,就是枚举每个位置就可以了 代码: #include <stdio.h> #include <string.h> #include <algorithm> usi

hdu 3032(博弈sg函数)

题意:与原来基本的尼姆博弈不同的是,可以将一堆石子分成两堆石子也算一步操作,其它的都是一样的. 分析:由于石子的堆数和每一堆石子的数量都很大,所以肯定不能用搜索去求sg函数,现在我们只能通过找规律的办法求得sg的规律. 通过打表找规律可以得到如下规律:if(x%4==0) sg[x]=x-1; if(x%4==1||x%4==2) sg[x]=x; if(x%4==3) sg[x] = x+1. 打表代码: #include<iostream> #include<cstdio> #

UVA 11534 - Say Goodbye to Tic-Tac-Toe(博弈sg函数)

UVA 11534 - Say Goodbye to Tic-Tac-Toe 题目链接 题意:给定一个序列,轮流放XO,要求不能有连续的XX或OO,最后一个放的人赢,问谁赢 思路:sg函数,每一段...看成一个子游戏,利用记忆化求sg值,记忆化的状态要记录下左边和右边是X还是O即可 代码: #include <stdio.h> #include <string.h> const int N = 105; int t, sg[3][3][N]; char str[N]; int ge

HDOJ 5724 博弈SG函数

链接: http://blog.csdn.net/tc_to_top/article/details/51958964 题意: n行20列的棋盘,对于每行,如果当前棋子右边没棋子,那可以直接放到右边,如果有就跳过放到其后面的第一个空位子,A先操作,最后谁无法操作则输,给定每行棋子状态,问先手是否必胜 题解: 组合博弈问题,直接sg函数,因为列只有20,可以状压搞,枚举每个状态,找到该状态下可行的操作然后标记 代码: 31 int sg[1 << 21]; 32 int vis[21]; 33

(转)博弈 SG函数

此文为以下博客做的摘要: https://blog.csdn.net/strangedbly/article/details/51137432 ---------------------------------------------------------------------------------------- 1.定义P-position和N-positon P表示Previous,N表示Next. 即上一个移动的人有必胜策略的局面是P-position,"先手必败"或&qu

Marbles(博弈SG函数)

Marbles Gym - 101908B Using marbles as a currency didn't go so well in Cubic?nia. In an attempt to make it up to his friends after stealing their marbles, the Emperor decided to invite them to a game night in his palace. Of course, the game uses marb

[hdu-5795]A Simple Nim 博弈 尼姆博弈 SG函数打表找规律

[题目]题目链接 Two players take turns picking candies from n heaps,the player who picks the last one will win the game.On each turn they can pick any number of candies which come from the same heap(picking no candy is not allowed).To make the game more int

Light OJ 1296 - Again Stone Game (博弈sg函数递推)

F - Again Stone Game Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Description Alice and Bob are playing a stone game. Initially there are n piles of stones and each pile contains some stone. Alice stars the

Light OJ 1199 - Partitioning Game (博弈sg函数)

D - Partitioning Game Time Limit:4000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Description Alice and Bob are playing a strange game. The rules of the game are: Initially there are n piles. A pile is formed by some cell

LightOJ 1315 - Game of Hyper Knights(博弈sg函数)

G - Game of Hyper Knights Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Description A Hyper Knight is like a chess knight except it has some special moves that a regular knight cannot do. Alice and Bob are p