HDU1016 Prime Ring Problem DFS 简单题

题意:输入n,代表有一个n个节点的环,然后在节点分别填入1到n这n个数,规定,第一个填入的必须是1.

0<n<40

要求填入后满足,任意相邻的2个节点的数之和为素数。

将满足条件的填法按照字典序的顺序小到大依次输出。

其实刚开始做的时候我觉得这道题会做很久的,想好后就开始打了,打着打着发现这道题打好了,有点意外,原来这么简单。

注意回溯,在每次DFS后要记得把状态恢复原样,比如这道题是每次DFS后都要把当前DFS的数字i恢复为vis[i]=false;

先考虑好初始化,结束条件,回溯。

先来一个prime[40],把40里面的素数先为true.

dfs(int cnt ,int dep)

cnt  当前要填入的数

dep 填到了第几个数了

vis[i] i这个数填了没有

ans 存储已经填入的数,填入的数有n个且符合条件就可以开始输入了

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #include<cmath>
 5 using namespace std;
 6 bool prime[43];
 7 bool vis[25];
 8 int tot,n;
 9 int ans[25];
10 void dfs(int cnt,int dep)
11 {
12     ans[dep]=cnt;
13     vis[cnt]=true;
14     if(dep==n&&prime[cnt+1])
15     {
16         for(int i=1;i<n;i++)
17             printf("%d ",ans[i]);
18         printf("%d\n",ans[n]);
19     }
20     for(int i=2;i<=n;i++)
21     {
22         if(!vis[i]&&prime[i+cnt])
23         {
24             dfs(i,dep+1);
25             vis[i]=false;
26         }
27     }
28 }
29 int main()
30 {
31     memset(prime,true,sizeof(prime));
32     prime[0]=prime[1]=true;
33     for(int i=2;i<=40;i++)
34     {
35         int m=sqrt(i);
36         for(int j=2;j<=m;j++)
37         {
38             if(i%j==0)
39             {
40                 prime[i]=false;
41                 break;
42             }
43         }
44     }
45     int cas=0;
46     while(scanf("%d",&n)!=EOF)
47     {
48         cas++;
49         printf("Case %d:\n",cas);
50         memset(vis,false,sizeof(vis));
51         memset(ans,0,sizeof(ans));
52         tot=0;
53         dfs(1,1);
54         printf("\n");
55     }
56     return 0;
57 }

时间: 2024-10-10 04:27:07

HDU1016 Prime Ring Problem DFS 简单题的相关文章

hdu1016 Prime Ring Problem dfs 素数打表

意思是给你一个数n,要构成一个素数环,这个素数由1-n组成,它的特征是选中环上的任意一个数字i,i与它相连的两个数加起来都分别为素数,满足就输出. 这个题的做法和hdu1015做法差不多都是使用dfs 回溯.不同之处在于这个要全部搜索,而hdu1015只需要搜索第一组就可以. 其次在这个题目中使用素数打表的方式简化素数判定,在一定情况下也是对效率有所提高的. Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others) Memory Limi

hdu 1016 Prime Ring Problem DFS解法 纪念我在杭电的第一百题

Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 29577    Accepted Submission(s): 13188 Problem Description A ring is compose of n circles as shown in diagram. Put natural num

HDU-1016 Prime Ring Problem(DFS深搜+打表)

题目回顾(HDU-1016): Prime Ring Problem Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.Note: the number

HDU1016 Prime Ring Problem(DFS回溯)

Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 34609    Accepted Submission(s): 15327 Problem Description A ring is compose of n circles as shown in diagram. Put natural numb

HDU1016 Prime Ring Problem

Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 35961    Accepted Submission(s): 15867 Problem Description A ring is compose of n circles as shown in diagram. Put natural numb

HDU1016 Prime Ring Problem(深度优先搜索)

Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 27488 Accepted Submission(s): 12248 Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1,

Prime Ring Problem (DFS练习题)

K - Prime Ring Problem ================================================================================================================================= 题目大意是给出 1~n 个数 第一个数必定是 1 ,使得无论那两个相邻的数相加,都是质数(即大于1的自然数中,除了1和它本身以外不再有其他因数): 打印出所有可能,即直接用dfs 遍历所有可能性

HDU 1016 Prime Ring Problem(DFS)

题目链接 Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always

UVA - 524 Prime Ring Problem(dfs回溯法) 解题心得

原题 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers  into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always be 1.