这道题得控制好精度,不然会贡献WA QAQ
还是那个规则:
int sgn(double x){ if(x > eps) return 1; else if(x < - eps) return -1; else return 0; }
思路:把简单多边形的每一个点和原点连线,就把这个多边形和圆的交变成了多个三角形与圆的交,根据有向面积的思路,加加减减就可以得到公共面积。
贴上代码了~
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> using namespace std; #define sqr(x) ((x) * (x)) const int MAXN = 55; const double EPS = 1e-8; const double PI = acos(-1.0);//3.14159265358979323846 const double INF = 1; const double eps = 1e-8; int sgn(double x){ if(x > eps) return 1; else if(x < - eps) return -1; else return 0; } struct Point { double x, y, ag; Point() {} Point(double x, double y): x(x), y(y) {} void read() { scanf("%lf%lf", &x, &y); } bool operator == (const Point &rhs) const { return sgn(x - rhs.x) == 0 && sgn(y - rhs.y) == 0; } bool operator < (const Point &rhs) const { if(y != rhs.y) return y < rhs.y; return x < rhs.x; } Point operator + (const Point &rhs) const { return Point(x + rhs.x, y + rhs.y); } Point operator - (const Point &rhs) const { return Point(x - rhs.x, y - rhs.y); } Point operator * (const double &b) const { return Point(x * b, y * b); } Point operator / (const double &b) const { return Point(x / b, y / b); } double operator * (const Point &rhs) const { return x * rhs.x + y * rhs.y; } double length() { return sqrt(x * x + y * y); } double angle() { return atan2(y, x); } Point unit() { return *this / length(); } void makeAg() { ag = atan2(y, x); } void print() { printf("%.10f %.10f\n", x, y); } }; typedef Point Vector; double dist(const Point &a, const Point &b) { return (a - b).length(); } double cross(const Point &a, const Point &b) { return a.x * b.y - a.y * b.x; } //ret >= 0 means turn right double cross(const Point &sp, const Point &ed, const Point &op) { return cross(sp - op, ed - op); } double area(const Point& a, const Point &b, const Point &c) { return fabs(cross(a - c, b - c)) / 2; } //counter-clockwise Point rotate(const Point &p, double angle, const Point &o = Point(0, 0)) { Point t = p - o; double x = t.x * cos(angle) - t.y * sin(angle); double y = t.y * cos(angle) + t.x * sin(angle); return Point(x, y) + o; } double cosIncludeAngle(const Point &a, const Point &b, const Point &o) { Point p1 = a - o, p2 = b - o; return (p1 * p2) / (p1.length() * p2.length()); } double includedAngle(const Point &a, const Point &b, const Point &o) { return acos(cosIncludeAngle(a, b, o)); /* double ret = abs((a - o).angle() - (b - o).angle()); if(sgn(ret - PI) > 0) ret = 2 * PI - ret; return ret; */ } struct Seg { Point st, ed; double ag; Seg() {} Seg(Point st, Point ed): st(st), ed(ed) {} void read() { st.read(); ed.read(); } void makeAg() { ag = atan2(ed.y - st.y, ed.x - st.x); } }; typedef Seg Line; //ax + by + c > 0 Line buildLine(double a, double b, double c) { if(sgn(a) == 0 && sgn(b) == 0) return Line(Point(sgn(c) > 0 ? -1 : 1, INF), Point(0, INF)); if(sgn(a) == 0) return Line(Point(sgn(b), -c/b), Point(0, -c/b)); if(sgn(b) == 0) return Line(Point(-c/a, 0), Point(-c/a, sgn(a))); if(b < 0) return Line(Point(0, -c/b), Point(1, -(a + c) / b)); else return Line(Point(1, -(a + c) / b), Point(0, -c/b)); } void moveRight(Line &v, double r) { double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y; dx = dx / dist(v.st, v.ed) * r; dy = dy / dist(v.st, v.ed) * r; v.st.x += dy; v.ed.x += dy; v.st.y -= dx; v.ed.y -= dx; } bool isOnSeg(const Seg &s, const Point &p) { return (p == s.st || p == s.ed) || (((p.x - s.st.x) * (p.x - s.ed.x) < 0 || (p.y - s.st.y) * (p.y - s.ed.y) < 0) && sgn(cross(s.ed, p, s.st)) == 0); } bool isInSegRec(const Seg &s, const Point &p) { return sgn(min(s.st.x, s.ed.x) - p.x) <= 0 && sgn(p.x - max(s.st.x, s.ed.x)) <= 0 && sgn(min(s.st.y, s.ed.y) - p.y) <= 0 && sgn(p.y - max(s.st.y, s.ed.y)) <= 0; } bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) { return (max(s1.x, e1.x) >= min(s2.x, e2.x)) && (max(s2.x, e2.x) >= min(s1.x, e1.x)) && (max(s1.y, e1.y) >= min(s2.y, e2.y)) && (max(s2.y, e2.y) >= min(s1.y, e1.y)) && (cross(s2, e1, s1) * cross(e1, e2, s1) >= 0) && (cross(s1, e2, s2) * cross(e2, e1, s2) >= 0); } bool isIntersected(const Seg &a, const Seg &b) { return isIntersected(a.st, a.ed, b.st, b.ed); } bool isParallel(const Seg &a, const Seg &b) { return sgn(cross(a.ed - a.st, b.ed - b.st)) == 0; } //return Ax + By + C =0 ‘s A, B, C void Coefficient(const Line &L, double &A, double &B, double &C) { A = L.ed.y - L.st.y; B = L.st.x - L.ed.x; C = L.ed.x * L.st.y - L.st.x * L.ed.y; } //point of intersection Point operator * (const Line &a, const Line &b) { double A1, B1, C1; double A2, B2, C2; Coefficient(a, A1, B1, C1); Coefficient(b, A2, B2, C2); Point I; I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1); I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1); return I; } bool isEqual(const Line &a, const Line &b) { double A1, B1, C1; double A2, B2, C2; Coefficient(a, A1, B1, C1); Coefficient(b, A2, B2, C2); return sgn(A1 * B2 - A2 * B1) == 0 && sgn(A1 * C2 - A2 * C1) == 0 && sgn(B1 * C2 - B2 * C1) == 0; } double Point_to_Line(const Point &p, const Line &L) { return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed)); } double Point_to_Seg(const Point &p, const Seg &L) { if(sgn((L.ed - L.st) * (p - L.st)) < 0) return dist(p, L.st); if(sgn((L.st - L.ed) * (p - L.ed)) < 0) return dist(p, L.ed); return Point_to_Line(p, L); } double Seg_to_Seg(const Seg &a, const Seg &b) { double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b)); double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a)); return min(ans1, ans2); } struct Circle { Point c; double r; Circle() {} Circle(Point c, double r): c(c), r(r) {} void read() { c.read(); scanf("%lf", &r); } double area() const { return PI * r * r; } bool contain(const Circle &rhs) const { return sgn(dist(c, rhs.c) + rhs.r - r) <= 0; } bool contain(const Point &p) const { return sgn(dist(c, p) - r) <= 0; } bool intersect(const Circle &rhs) const { return sgn(dist(c, rhs.c) - r - rhs.r) < 0; } bool tangency(const Circle &rhs) const { return sgn(dist(c, rhs.c) - r - rhs.r) == 0; } Point pos(double angle) const { Point p = Point(c.x + r, c.y); return rotate(p, angle, c); } }; double CommonArea(const Circle &A, const Circle &B) { double area = 0.0; const Circle & M = (A.r > B.r) ? A : B; const Circle & N = (A.r > B.r) ? B : A; double D = dist(M.c, N.c); if((D < M.r + N.r) && (D > M.r - N.r)) { double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D); double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D); double alpha = 2 * acos(cosM); double beta = 2 * acos(cosN); double TM = 0.5 * M.r * M.r * (alpha - sin(alpha)); double TN = 0.5 * N.r * N.r * (beta - sin(beta)); area = TM + TN; } else if(D <= M.r - N.r) { area = N.area(); } return area; } int intersection(const Seg &s, const Circle &cir, Point &p1, Point &p2) { double angle = cosIncludeAngle(s.ed, cir.c, s.st); //double angle1 = cos(includedAngle(s.ed, cir.c, s.st)); double B = dist(cir.c, s.st); double a = 1, b = -2 * B * angle, c = sqr(B) - sqr(cir.r); double delta = sqr(b) - 4 * a * c; if(sgn(delta) < 0) return 0; if(sgn(delta) == 0) delta = 0; double x1 = (-b - sqrt(delta)) / (2 * a), x2 = (-b + sqrt(delta)) / (2 * a); Vector v = (s.ed - s.st).unit(); p1 = s.st + v * x1; p2 = s.st + v * x2; return 1 + sgn(delta); } double CommonArea(const Circle &cir, Point p1, Point p2) { if(p1 == cir.c || p2 == cir.c) return 0; if(cir.contain(p1) && cir.contain(p2)) { return area(cir.c, p1, p2); } else if(!cir.contain(p1) && !cir.contain(p2)) { Point q1, q2; int t = intersection(Line(p1, p2), cir, q1, q2); if(t == 0) { double angle = includedAngle(p1, p2, cir.c); return 0.5 * sqr(cir.r) * angle; } else { double angle1 = includedAngle(p1, p2, cir.c); double angle2 = includedAngle(q1, q2, cir.c); if(isInSegRec(Seg(p1, p2), q1))return 0.5 * sqr(cir.r) * (angle1 - angle2 + sin(angle2)); else return 0.5 * sqr(cir.r) * angle1; } } else { if(cir.contain(p2)) swap(p1, p2); Point q1, q2; intersection(Line(p1, p2), cir, q1, q2); double angle = includedAngle(q2, p2, cir.c); double a = area(cir.c, p1, q2); double b = 0.5 * sqr(cir.r) * angle; return a + b; } } struct Triangle { Point p[3]; Triangle() {} Triangle(Point *t) { for(int i = 0; i < 3; ++i) p[i] = t[i]; } void read() { for(int i = 0; i < 3; ++i) p[i].read(); } double area() const { return ::area(p[0], p[1], p[2]); } Point& operator[] (int i) { return p[i]; } }; double CommonArea(Triangle tir, const Circle &cir) { double ret = 0; ret += sgn(cross(tir[0], cir.c, tir[1])) * CommonArea(cir, tir[0], tir[1]); ret += sgn(cross(tir[1], cir.c, tir[2])) * CommonArea(cir, tir[1], tir[2]); ret += sgn(cross(tir[2], cir.c, tir[0])) * CommonArea(cir, tir[2], tir[0]); return abs(ret); } struct Poly { int n; Point p[MAXN];//p[n] = p[0] void init(Point *pp, int nn) { n = nn; for(int i = 0; i < n; ++i) p[i] = pp[i]; p[n] = p[0]; } double area() { if(n < 3) return 0; double s = p[0].y * (p[n - 1].x - p[1].x); for(int i = 1; i < n; ++i) s += p[i].y * (p[i - 1].x - p[i + 1].x); return s / 2; } }; //the convex hull is clockwise void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top] sort(p, p + n); top = 1; stk[0] = 0; stk[1] = 1; for(int i = 2; i < n; ++i) { while(top && cross(p[i], p[stk[top]], p[stk[top - 1]]) <= 0) --top; stk[++top] = i; } int len = top; stk[++top] = n - 2; for(int i = n - 3; i >= 0; --i) { while(top != len && cross(p[i], p[stk[top]], p[stk[top - 1]]) <= 0) --top; stk[++top] = i; } } //use for half_planes_cross bool cmpAg(const Line &a, const Line &b) { if(sgn(a.ag - b.ag) == 0) return sgn(cross(b.ed, a.st, b.st)) < 0; return a.ag < b.ag; } //clockwise, plane is on the right bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) { int i, n; sort(v, v + vn, cmpAg); for(i = n = 1; i < vn; ++i) { if(sgn(v[i].ag - v[i-1].ag) == 0) continue; v[n++] = v[i]; } int head = 0, tail = 1; deq[0] = v[0], deq[1] = v[1]; for(i = 2; i < n; ++i) { if(isParallel(deq[tail - 1], deq[tail]) || isParallel(deq[head], deq[head + 1])) return false; while(head < tail && sgn(cross(v[i].ed, deq[tail - 1] * deq[tail], v[i].st)) > 0) --tail; while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + 1], v[i].st)) > 0) ++head; deq[++tail] = v[i]; } while(head < tail && sgn(cross(deq[head].ed, deq[tail - 1] * deq[tail], deq[head].st)) > 0) --tail; while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + 1], deq[tail].st)) > 0) ++head; if(tail <= head + 1) return false; res.n = 0; for(i = head; i < tail; ++i) res.p[res.n++] = deq[i] * deq[i + 1]; res.p[res.n++] = deq[head] * deq[tail]; res.n = unique(res.p, res.p + res.n) - res.p; res.p[res.n] = res.p[0]; return true; } //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise double dia_rotating_calipers(Poly &res, int &ix, int &jx) { double dia = 0; int q = 1; for(int i = 0; i < res.n - 1; ++i) { while(sgn(cross(res.p[i], res.p[q + 1], res.p[i + 1]) - cross(res.p[i], res.p[q], res.p[i + 1])) > 0) q = (q + 1) % (res.n - 1); if(sgn(dist(res.p[i], res.p[q]) - dia) > 0) { dia = dist(res.p[i], res.p[q]); ix = i; jx = q; } if(sgn(dist(res.p[i + 1], res.p[q]) - dia) > 0) { dia = dist(res.p[i + 1], res.p[q]); ix = i + 1; jx = q; } } return dia; } //a and b must be clockwise, find the minimum distance between two convex hull double half_rotating_calipers(Poly &a, Poly &b) { int sa = 0, sb = 0; for(int i = 0; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < 0) sa = i; for(int i = 0; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < 0) sb = i; double tmp, ans = dist(a.p[0], b.p[0]); for(int i = 0; i < a.n; ++i) { while(sgn(tmp = cross(a.p[sa], a.p[sa + 1], b.p[sb + 1]) - cross(a.p[sa], a.p[sa + 1], b.p[sb])) > 0) sb = (sb + 1) % (b.n - 1); if(sgn(tmp) < 0) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + 1]))); else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + 1]), Seg(b.p[sb], b.p[sb + 1]))); sa = (sa + 1) % (a.n - 1); } return ans; } double rotating_calipers(Poly &a, Poly &b) { return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a)); } /*******************************************************************************************/ Point p[MAXN]; Circle cir; double r; int n; int main() { while(scanf("%lf", &r) != EOF) { scanf("%d", &n); for(int i = 0; i < n; ++i) p[i].read(); p[n] = p[0]; cir = Circle(Point(0, 0), r); double ans = 0; for(int i = 0; i < n; ++i) ans += sgn(cross(p[i], Point(0, 0), p[i + 1])) * CommonArea(cir, p[i], p[i + 1]); printf("%.2f\n", fabs(ans)); } }
POJ 3675 Telescope 简单多边形和圆的面积交
时间: 2024-10-06 10:17:57