POJ 3675 Telescope 简单多边形和圆的面积交

这道题得控制好精度,不然会贡献WA  QAQ

还是那个规则:

int sgn(double x){
    if(x > eps)    return 1;
    else if(x < - eps)  return -1;
    else    return 0;
}

思路:把简单多边形的每一个点和原点连线,就把这个多边形和圆的交变成了多个三角形与圆的交,根据有向面积的思路,加加减减就可以得到公共面积。

贴上代码了~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define sqr(x) ((x) * (x))

const int MAXN = 55;
const double EPS = 1e-8;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = 1;
const double eps = 1e-8;

int sgn(double x){
    if(x > eps)    return 1;
    else if(x < - eps)  return -1;
    else    return 0;
}
struct Point {
    double x, y, ag;
    Point() {}
    Point(double x, double y): x(x), y(y) {}
    void read() {
        scanf("%lf%lf", &x, &y);
    }
    bool operator == (const Point &rhs) const {
        return sgn(x - rhs.x) == 0 && sgn(y - rhs.y) == 0;
    }
    bool operator < (const Point &rhs) const {
        if(y != rhs.y) return y < rhs.y;
        return x < rhs.x;
    }
    Point operator + (const Point &rhs) const {
        return Point(x + rhs.x, y + rhs.y);
    }
    Point operator - (const Point &rhs) const {
        return Point(x - rhs.x, y - rhs.y);
    }
    Point operator * (const double &b) const {
        return Point(x * b, y * b);
    }
    Point operator / (const double &b) const {
        return Point(x / b, y / b);
    }
    double operator * (const Point &rhs) const {
        return x * rhs.x + y * rhs.y;
    }
    double length() {
        return sqrt(x * x + y * y);
    }
    double angle() {
        return atan2(y, x);
    }
    Point unit() {
        return *this / length();
    }
    void makeAg() {
        ag = atan2(y, x);
    }
    void print() {
        printf("%.10f %.10f\n", x, y);
    }
};
typedef Point Vector;

double dist(const Point &a, const Point &b) {
    return (a - b).length();
}

double cross(const Point &a, const Point &b) {
    return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn right
double cross(const Point &sp, const Point &ed, const Point &op) {
    return cross(sp - op, ed - op);
}

double area(const Point& a, const Point &b, const Point &c) {
    return fabs(cross(a - c, b - c)) / 2;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(0, 0)) {
    Point t = p - o;
    double x = t.x * cos(angle) - t.y * sin(angle);
    double y = t.y * cos(angle) + t.x * sin(angle);
    return Point(x, y) + o;
}

double cosIncludeAngle(const Point &a, const Point &b, const Point &o) {
    Point p1 = a - o, p2 = b - o;
    return (p1 * p2) / (p1.length() * p2.length());
}

double includedAngle(const Point &a, const Point &b, const Point &o) {
    return acos(cosIncludeAngle(a, b, o));
    /*
    double ret = abs((a - o).angle() - (b - o).angle());
    if(sgn(ret - PI) > 0) ret = 2 * PI - ret;
    return ret;
    */
}

struct Seg {
    Point st, ed;
    double ag;
    Seg() {}
    Seg(Point st, Point ed): st(st), ed(ed) {}
    void read() {
        st.read(); ed.read();
    }
    void makeAg() {
        ag = atan2(ed.y - st.y, ed.x - st.x);
    }
};
typedef Seg Line;

//ax + by + c > 0
Line buildLine(double a, double b, double c) {
    if(sgn(a) == 0 && sgn(b) == 0) return Line(Point(sgn(c) > 0 ? -1 : 1, INF), Point(0, INF));
    if(sgn(a) == 0) return Line(Point(sgn(b), -c/b), Point(0, -c/b));
    if(sgn(b) == 0) return Line(Point(-c/a, 0), Point(-c/a, sgn(a)));
    if(b < 0) return Line(Point(0, -c/b), Point(1, -(a + c) / b));
    else return Line(Point(1, -(a + c) / b), Point(0, -c/b));
}

void moveRight(Line &v, double r) {
    double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
    dx = dx / dist(v.st, v.ed) * r;
    dy = dy / dist(v.st, v.ed) * r;
    v.st.x += dy; v.ed.x += dy;
    v.st.y -= dx; v.ed.y -= dx;
}

bool isOnSeg(const Seg &s, const Point &p) {
    return (p == s.st || p == s.ed) ||
        (((p.x - s.st.x) * (p.x - s.ed.x) < 0 ||
          (p.y - s.st.y) * (p.y - s.ed.y) < 0) &&
         sgn(cross(s.ed, p, s.st)) == 0);
}

bool isInSegRec(const Seg &s, const Point &p) {
    return sgn(min(s.st.x, s.ed.x) - p.x) <= 0 && sgn(p.x - max(s.st.x, s.ed.x)) <= 0
        && sgn(min(s.st.y, s.ed.y) - p.y) <= 0 && sgn(p.y - max(s.st.y, s.ed.y)) <= 0;
}

bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
    return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
        (max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
        (max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
        (max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
        (cross(s2, e1, s1) * cross(e1, e2, s1) >= 0) &&
        (cross(s1, e2, s2) * cross(e2, e1, s2) >= 0);
}

bool isIntersected(const Seg &a, const Seg &b) {
    return isIntersected(a.st, a.ed, b.st, b.ed);
}

bool isParallel(const Seg &a, const Seg &b) {
    return sgn(cross(a.ed - a.st, b.ed - b.st)) == 0;
}

//return Ax + By + C =0 ‘s A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
    A = L.ed.y - L.st.y;
    B = L.st.x - L.ed.x;
    C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
    double A1, B1, C1;
    double A2, B2, C2;
    Coefficient(a, A1, B1, C1);
    Coefficient(b, A2, B2, C2);
    Point I;
    I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
    I.y =   (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
    return I;
}

bool isEqual(const Line &a, const Line &b) {
    double A1, B1, C1;
    double A2, B2, C2;
    Coefficient(a, A1, B1, C1);
    Coefficient(b, A2, B2, C2);
    return sgn(A1 * B2 - A2 * B1) == 0 && sgn(A1 * C2 - A2 * C1) == 0 && sgn(B1 * C2 - B2 * C1) == 0;
}

double Point_to_Line(const Point &p, const Line &L) {
    return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
}

double Point_to_Seg(const Point &p, const Seg &L) {
    if(sgn((L.ed - L.st) * (p - L.st)) < 0) return dist(p, L.st);
    if(sgn((L.st - L.ed) * (p - L.ed)) < 0) return dist(p, L.ed);
    return Point_to_Line(p, L);
}

double Seg_to_Seg(const Seg &a, const Seg &b) {
    double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
    double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
    return min(ans1, ans2);
}

struct Circle {
    Point c;
    double r;
    Circle() {}
    Circle(Point c, double r): c(c), r(r) {}
    void read() {
        c.read();
        scanf("%lf", &r);
    }
    double area() const {
        return PI * r * r;
    }
    bool contain(const Circle &rhs) const {
        return sgn(dist(c, rhs.c) + rhs.r - r) <= 0;
    }
    bool contain(const Point &p) const {
        return sgn(dist(c, p) - r) <= 0;
    }
    bool intersect(const Circle &rhs) const {
        return sgn(dist(c, rhs.c) - r - rhs.r) < 0;
    }
    bool tangency(const Circle &rhs) const {
        return sgn(dist(c, rhs.c) - r - rhs.r) == 0;
    }
    Point pos(double angle) const {
        Point p = Point(c.x + r, c.y);
        return rotate(p, angle, c);
    }
};

double CommonArea(const Circle &A, const Circle &B) {
    double area = 0.0;
    const Circle & M = (A.r > B.r) ? A : B;
    const Circle & N = (A.r > B.r) ? B : A;
    double D = dist(M.c, N.c);
    if((D < M.r + N.r) && (D > M.r - N.r)) {
        double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
        double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
        double alpha = 2 * acos(cosM);
        double beta = 2 * acos(cosN);
        double TM = 0.5 * M.r * M.r * (alpha - sin(alpha));
        double TN = 0.5 * N.r * N.r * (beta - sin(beta));
        area = TM + TN;
    }
    else if(D <= M.r - N.r) {
        area = N.area();
    }
    return area;
}

int intersection(const Seg &s, const Circle &cir, Point &p1, Point &p2) {
    double angle = cosIncludeAngle(s.ed, cir.c, s.st);
    //double angle1 = cos(includedAngle(s.ed, cir.c, s.st));
    double B = dist(cir.c, s.st);
    double a = 1, b = -2 * B * angle, c = sqr(B) - sqr(cir.r);
    double delta = sqr(b) - 4 * a * c;
    if(sgn(delta) < 0) return 0;
    if(sgn(delta) == 0) delta = 0;
    double x1 = (-b - sqrt(delta)) / (2 * a), x2 = (-b + sqrt(delta)) / (2 * a);
    Vector v = (s.ed - s.st).unit();
    p1 = s.st + v * x1;
    p2 = s.st + v * x2;
    return 1 + sgn(delta);
}

double CommonArea(const Circle &cir, Point p1, Point p2) {
    if(p1 == cir.c || p2 == cir.c) return 0;
    if(cir.contain(p1) && cir.contain(p2)) {
        return area(cir.c, p1, p2);
    } else if(!cir.contain(p1) && !cir.contain(p2)) {
        Point q1, q2;
        int t = intersection(Line(p1, p2), cir, q1, q2);
        if(t == 0) {
            double angle = includedAngle(p1, p2, cir.c);
            return 0.5 * sqr(cir.r) * angle;
        } else {
            double angle1 = includedAngle(p1, p2, cir.c);
            double angle2 = includedAngle(q1, q2, cir.c);
            if(isInSegRec(Seg(p1, p2), q1))return 0.5 * sqr(cir.r) * (angle1 - angle2 + sin(angle2));
            else return 0.5 * sqr(cir.r) * angle1;
        }
    } else {
        if(cir.contain(p2)) swap(p1, p2);
        Point q1, q2;
        intersection(Line(p1, p2), cir, q1, q2);
        double angle = includedAngle(q2, p2, cir.c);
        double a = area(cir.c, p1, q2);
        double b = 0.5 * sqr(cir.r) * angle;
        return a + b;
    }
}

struct Triangle {
    Point p[3];
    Triangle() {}
    Triangle(Point *t) {
        for(int i = 0; i < 3; ++i) p[i] = t[i];
    }
    void read() {
        for(int i = 0; i < 3; ++i) p[i].read();
    }
    double area() const {
        return ::area(p[0], p[1], p[2]);
    }
    Point& operator[] (int i) {
        return p[i];
    }
};

double CommonArea(Triangle tir, const Circle &cir) {
    double ret = 0;
    ret += sgn(cross(tir[0], cir.c, tir[1])) * CommonArea(cir, tir[0], tir[1]);
    ret += sgn(cross(tir[1], cir.c, tir[2])) * CommonArea(cir, tir[1], tir[2]);
    ret += sgn(cross(tir[2], cir.c, tir[0])) * CommonArea(cir, tir[2], tir[0]);
    return abs(ret);
}

struct Poly {
    int n;
    Point p[MAXN];//p[n] = p[0]
    void init(Point *pp, int nn) {
        n = nn;
        for(int i = 0; i < n; ++i) p[i] = pp[i];
        p[n] = p[0];
    }
    double area() {
        if(n < 3) return 0;
        double s = p[0].y * (p[n - 1].x - p[1].x);
        for(int i = 1; i < n; ++i)
            s += p[i].y * (p[i - 1].x - p[i + 1].x);
        return s / 2;
    }
};
//the convex hull is clockwise
void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
    sort(p, p + n);
    top = 1;
    stk[0] = 0; stk[1] = 1;
    for(int i = 2; i < n; ++i) {
        while(top && cross(p[i], p[stk[top]], p[stk[top - 1]]) <= 0) --top;
        stk[++top] = i;
    }
    int len = top;
    stk[++top] = n - 2;
    for(int i = n - 3; i >= 0; --i) {
        while(top != len && cross(p[i], p[stk[top]], p[stk[top - 1]]) <= 0) --top;
        stk[++top] = i;
    }
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
    if(sgn(a.ag - b.ag) == 0)
        return sgn(cross(b.ed, a.st, b.st)) < 0;
    return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
    int i, n;
    sort(v, v + vn, cmpAg);
    for(i = n = 1; i < vn; ++i) {
        if(sgn(v[i].ag - v[i-1].ag) == 0) continue;
        v[n++] = v[i];
    }
    int head = 0, tail = 1;
    deq[0] = v[0], deq[1] = v[1];
    for(i = 2; i < n; ++i) {
        if(isParallel(deq[tail - 1], deq[tail]) || isParallel(deq[head], deq[head + 1]))
            return false;
        while(head < tail && sgn(cross(v[i].ed, deq[tail - 1] * deq[tail], v[i].st)) > 0)
            --tail;
        while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + 1], v[i].st)) > 0)
            ++head;
        deq[++tail] = v[i];
    }
    while(head < tail && sgn(cross(deq[head].ed, deq[tail - 1] * deq[tail], deq[head].st)) > 0)
        --tail;
    while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + 1], deq[tail].st)) > 0)
        ++head;
    if(tail <= head + 1) return false;
    res.n = 0;
    for(i = head; i < tail; ++i)
        res.p[res.n++] = deq[i] * deq[i + 1];
    res.p[res.n++] = deq[head] * deq[tail];
    res.n = unique(res.p, res.p + res.n) - res.p;
    res.p[res.n] = res.p[0];
    return true;
}

//ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
    double dia = 0;
    int q = 1;
    for(int i = 0; i < res.n - 1; ++i) {
        while(sgn(cross(res.p[i], res.p[q + 1], res.p[i + 1]) - cross(res.p[i], res.p[q], res.p[i + 1])) > 0)
            q = (q + 1) % (res.n - 1);
        if(sgn(dist(res.p[i], res.p[q]) - dia) > 0) {
            dia = dist(res.p[i], res.p[q]);
            ix = i; jx = q;
        }
        if(sgn(dist(res.p[i + 1], res.p[q]) - dia) > 0) {
            dia = dist(res.p[i + 1], res.p[q]);
            ix = i + 1; jx = q;
        }
    }
    return dia;
}
//a and b must be clockwise, find the minimum distance between two convex hull
double half_rotating_calipers(Poly &a, Poly &b) {
    int sa = 0, sb = 0;
    for(int i = 0; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < 0) sa = i;
    for(int i = 0; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < 0) sb = i;
    double tmp, ans = dist(a.p[0], b.p[0]);
    for(int i = 0; i < a.n; ++i) {
        while(sgn(tmp = cross(a.p[sa], a.p[sa + 1], b.p[sb + 1]) - cross(a.p[sa], a.p[sa + 1], b.p[sb])) > 0)
            sb = (sb + 1) % (b.n - 1);
        if(sgn(tmp) < 0) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + 1])));
        else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + 1]), Seg(b.p[sb], b.p[sb + 1])));
        sa = (sa + 1) % (a.n - 1);
    }
    return ans;
}

double rotating_calipers(Poly &a, Poly &b) {
    return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
}

/*******************************************************************************************/

Point p[MAXN];
Circle cir;
double r;
int n;

int main() {
    while(scanf("%lf", &r) != EOF) {
        scanf("%d", &n);
        for(int i = 0; i < n; ++i) p[i].read();
        p[n] = p[0];
        cir = Circle(Point(0, 0), r);
        double ans = 0;
        for(int i = 0; i < n; ++i)
            ans += sgn(cross(p[i], Point(0, 0), p[i + 1])) * CommonArea(cir, p[i], p[i + 1]);
        printf("%.2f\n", fabs(ans));
    }
}

POJ 3675 Telescope 简单多边形和圆的面积交

时间: 2024-10-06 10:17:57

POJ 3675 Telescope 简单多边形和圆的面积交的相关文章

POJ 2546 &amp; ZOJ 1597 Circular Area 两圆的面积交

Circular Area Time Limit: 2 Seconds      Memory Limit: 65536 KB Your task is to write a program, which, given two circles, calculates the area of their intersection with the accuracy of three digits after decimal point. Input In the single line of in

POJ 3675 Telescope

题意:给定一个不自交的多边形,要求和圆心在原点的圆的面积交. 思路:同POJ2986,是加强版 代码: 1 #include<algorithm> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstring> 5 #include<iostream> 6 struct Point{ 7 double x,y; 8 Point(){} 9 Point(double x0,double y0):x(

ZOJ 1675 矩形与圆的面积交

Little Mammoth Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge It is well known that mammoths used to live in caves. This is a story of a little mammoth who lived in a cave with his mummy and daddy. The mammoth was little and ver

HDU 5120 Intersection(圆的面积交)

题目大意:给你两个圆环,让你求出来圆环的面积交,需要用到圆的面积交,然后容斥一下,就可以得到圆环的面积交.画一下图就会很清晰. Intersection Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others) Total Submission(s): 526    Accepted Submission(s): 226 Problem Description Matt is a b

poj3675 求多边形与圆的面积交

题意:给出多边形的顶点坐标.圆的圆心坐标和半径,求面积交 sol:又是模板题啦= = 注意poj的C++好像认不出hypot函数,要稍微改写一下. hypot(double x,double y):即返回sqrt(x*x+y*y)的值 1 #include<vector> 2 #include<list> 3 #include<map> 4 #include<set> 5 #include<deque> 6 #include<queue&g

HDU5120 Intersection 【求圆的面积交】

Intersection Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others) Total Submission(s): 41    Accepted Submission(s): 22 Problem Description Matt is a big fan of logo design. Recently he falls in love with logo made up

HDU 3982 半平面交+圆与多边形面积交

Harry Potter and J.K.Rowling Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 685    Accepted Submission(s): 210 Problem Description In July 31st, last month, the author of the famous novel seri

poj 2546(两圆公共面积)

Circular Area Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5682   Accepted: 2225 Description Your task is to write a program, which, given two circles, calculates the area of their intersection with the accuracy of three digits after

SPOJ CIRU SPOJ VCIRCLE 圆的面积并问题

SPOJ VCIRCLE SPOJ CIRU 两道题都是给出若干圆 就面积并,数据规模和精度要求不同. 求圆面积并有两种常见的方法,一种是Simpson积分,另一种是几何法. 在这里给出几何方法. PS.以下算法基于正方向为逆时针 考虑上图中的蓝色圆,绿色的圆和蓝色的圆交于 A,B 2个交点 ,我们在逆时针系下考虑,那么 可以知道 对于蓝色的圆,它对应的某个 角度区间被覆盖了 假设 区间为 [A, B], 并且角度是按照 圆心到交点的 向量的 极角来定义 (为了方便,我一般都把角度转化到 [0,