P值是论文中最常用的一个统计学指标,可是其误用、解释错误的现象却很常见。因此,很有必要说明p值的意义、用法及常见错误。
P值指的是比较的两者的差别是由机遇所致的可能性大小。P值越小,越有理由认为对比事物间存在差异。例如,P<0.05,就是说结果显示的差别是由机遇所致的可能性不足5%,或者说,别人在同样的条件下重复同样的研究,得出相反结论的可能性不足5%。P>0.05称“不显著”;P<=0.05称“显著”,P<=0.01称“非常显著”。
由于常用“显著”来表示P值大小,所以P值最常见的误用是把统计学上的显著与临床或实际中的显著差异相混淆,即混淆“差异具有显著性”和“具有显著差异”二者的意思。其实,前者指的是p<=0.05,即说明有充分的理由认为比较的二者来自同一总体的可能性不足5%,因而认为二者确实有差异,下这个结论出错的可能性<=5%。而后者的意思是二者的差别确实很大。举例来说,4和40的差别很大,因而可以说是“有显著差异”,而4和4.2差别不大,但如果计算得到的P值<=0.05,则认为二者“差别有显著性”,但是不能说“有显著差异”。
由于“有显著差异”和“差异具有显著性”容易混淆,因而现在有些期刊提倡用“差异有统计意义”来代替“差异有显著性”,用“差异无统计意义”、“差异有高度统计意义”来代替“差异不显著”和“差异有高度显著性”。例如《中华胃肠外科学》即是如此。
如果P>5%,是否我们就可以下结论说比较的二者没有差别呢?不能。P>5%只能说明没有充分的证据说明二者确有差别,但是也不能说二者没有差别或差别很小。在这两个极端之间还有一个过渡区间,即无论下有差别还是没有差别或差别很小的证据都不足。要推断二者没有差别或差别很小,需要采用等效检验的统计推断方法。
不得不提的P值
的确,P值是最常用的一个统计学指标,几乎统计软件输出结果都有P值。了解p值的由来、计算和意义很有必要。
一、P值的由来
R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)Fisher的具体做法是:
- 假定某一参数的取值。
- 选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。
- 从研究总体中抽取一个随机样本4计算检验统计量的值5计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
- 如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。
- 如果0.01<P值<0.05,说明较弱的判定结果,拒接假定的参数取值。
- 如果P值>0.05,说明结果更倾向于接受假定的参数取值。
可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平αα,也就是说事先确定了拒绝域。但是,如果选中相同的αα,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。
因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。
为理解P值的计算过程,用ZZ表示检验的统计量,ZCZC表示根据样本数据计算得到的检验统计量值。
左侧检验 H0:μ≥μ0H0:μ≥μ0 vs H1:μ<μ0H1:μ<μ0
P值是当μ=μ0μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≤Z|μ=μ0)P(ZC≤Z|μ=μ0)
右侧检验 H0:μ≤μ0H0:μ≤μ0 vs H1:μ>μ0H1:μ>μ0
P值是当μ=μ0μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≥Z|μ=μ0)P(ZC≥Z|μ=μ0)
双侧检验 H0:μ=μ0H0:μ=μ0 vs H1:μ≠μ0H1:μ≠μ0
P值是当μ=μ0μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = 2P(ZC≥|Z||μ=μ0)2P(ZC≥|Z||μ=μ0)
三、P值的意义
P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明这种情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。