R in action读书笔记(14)第十一章 中级绘图 之一:散点图(高能预警)

第十一章中级绘图

本章内容:

二元变量和多元变量关系的可视化

绘制散点图和折线图

理解相关图

学习马赛克图和关联图

本章用到的函数有:


plot


hexbin


ablines


iplot


scatterplot


scatterplot3d


pairs


plot3d


scatterplotMatrix


scatter3d


cpairs


symbols


smoothScatter

 

11.1散点图

添加了最佳拟合曲线的散点图

> attach(mtcars)
> plot(wt,mpg,main="Basic Scatter plot of MPGvs.weight",xlab="car weight (lbs/1000",ylab="miles pergallon",pch=19)
>abline(lm(mpg~wt),col="red",lwd=2,lty=1)#添加最佳拟合的线性直线
>lines(lowess(wt,mpg),col="blue",lwd=2,lty=2)#添加一条平滑曲线

  

car包中的scatterplot()函数增强了散点图的许多功能,它可以很方便地绘制散点图,并

能添加拟合曲线、边界箱线图和置信椭圆,还可以按子集绘图和交互式地识别点。

> library(car)
> scatterplot(mpg~wt|cyl,data=mtcars,lwd=2,
+ main="scatter plot of pmg \n vs. weight by #cylinders",
+ xlab="car weight (lbs/1000)",
+ ylab="miles per gallon",
+ legend.plot=TRUE,#左上边界添加图例
+ id.method="identify",
+ labels=row.names(mtcars),#可通过点的行名称来识别点
+ boxplots="xy")

11.1.1 散点图矩阵

pairs()函数可以创建基础的散点图矩阵。

> pairs(~mpg+disp+drat+wt,data=mtcars,
+ main="basic scatter plot matrix")

主对角线的上方和下方的六幅散点图是相同的,选项upper.panel =NULL将只生成下三角的图形。

car包中的scatterplotMatrix()函数也可以生成散点图矩阵,并有以下可选操作:

以某个因子为条件绘制散点图矩阵;

包含线性和平滑拟合曲线;

在主对角线放置箱线图、密度图或者直方图;

在各单元格的边界添加轴须图。

> library(car)
> scatterplotMatrix(~mpg+disp+drat+wt,data=mtcars,spread=FALSE,
+ lty.smooth=2,main="scatter plot matrix via car package")

  

线性和平滑(loess)拟合曲线被默认添加,主对角线处添加了核密度曲线和轴须图。spread = FALSE选项表示不添加展示分散度和对称信息的直线,lty.smooth =2设定平滑(loess)拟合曲线使用虚线而不是实线。

scatterplotMatrix()函数的另一个用法

> library(car)#主对角线的核密度曲线改成了直方图,并且直方图是以各车的气缸数为条件绘制的。
> scatterplotMatrix(~mpg+disp+drat+wt|cyl,data=mtcars,spread=FALSE,
+ diagonal="histogram",main="scatter plot matrix via carpackage")

  

主对角线的核密度曲线改成了直方图,并且直方图是以各车的气缸数为条件绘制的。图形包含主对角线中的直方图以及其他部分的线性和平滑拟合曲线。另外,子群(根据气缸数)通过符号类型和颜色来区分标注默认地,回归直线拟合整个样本,包含选项by.groups = TRUE将可依据各子集分别生成拟合曲线。

gclus包中的cpairs()函数提供了一个有趣的散点图矩阵变种。它含有可以重排矩阵中变量位置的选项,可以让相关性更高的变量更靠近主对角线。该函数还能对各单元格进行颜色编码来展示变量间的相关性大小。首先考察相关性:

>cor(mtcars[c("mpg","wt","disp","drat")])

mpg wt disp drat

mpg 1.0000000 -0.8676594-0.8475514 0.6811719

wt -0.8676594 1.0000000 0.8879799 -0.7124406

disp -0.8475514 0.8879799 1.0000000 -0.7102139

drat 0.6811719 -0.7124406-0.7102139 1.0000000

gclus包生成的散点图矩阵

> library(gclus)
> mydata<-mtcars[c(1,3,5,6)]
> mydata.corr<-abs(cor(mydata))#相关系数的绝对值
> mycolors<-dmat.color(mydata.corr)#获取绘图的颜色
> myorder<-order.single(mydata.corr)#重排对象,可使得相似的对象更为靠近
> cpairs(mydata, myorder,panel.colors=mycolors,gap=.5,main="variablesordered and colored by correlation")

散点图矩阵将根据新的变量顺序(myorder)和颜色列表(mycolors)绘图、上色,gap选项

使矩阵各单元格间的间距稍微增大一点。相关性最高的变量对是车重与排量,以及每加仑英里数与车重(标了红色,并且离主对角线最近)

11.1.2 高密度散点图

当数据点重叠很严重时,用散点图来观察变量关系就显得“力不从心”了。

> set.seed(1234)
> n<-10000
> c1<-matrix(rnorm(n,mean=0,sd=.5),ncol=2)
> c2<-matrix(rnorm(n,mean=3,sd=2),ncol=2)
> mydata<-rbind(c1,c2)
> mydata<-as.data.frame(mydata)
> names(mydata)<-c("x","y")
> with(mydata,plot(x,y,pch=19,main="scatter plot with 10000 observations"))

smoothScatter()函数可利用核密度估计生成用颜色密度来表示点分布的散点图,利用光平滑密度估计绘制的散点图。此处密度易读性更强:

> with(mydata, smoothScatter(x,y,main="scatter plot with 10000observations"))

hexbin包中的hexbin()函数将二元变量的封箱放到六边形单元格中(图形比名称更直观)

> library(hexbin)
> with(mydata,{bin<-hexbin(x,y,xbins=50)plot(bin,main="hexagonalbinning with \n 10000 boservations")})

IDPmisc包中的iplot()函数也可通过颜色来展示点的密度(在某特定点上数据点的

数目)

> library(IDPmisc)
> with(mydata,{ iplot(x,y,main="imagescatter plot with\n color indicating density") })

11.1.3 三维散点图

假使你对汽车英里数、车重和排量间的关系感兴趣,可用scatterplot3d中的

scatterplot3d()函数来绘制它们的关系。Scatterplot3d(x,y,z) x被绘制在水平轴上,y被绘制在竖直轴上,z被绘制在透视轴上。

> library(scatterplot3d)
> attach(mtcars)
> scatterplot3d(wt,disp,mpg,main="basic 3d scatter plot")

注:如出现Error in plot.new() : figure margins too large 重启Rstudio即可

satterplot3d()函数提供了许多选项,包括设置图形符号、轴、颜色、线条、网格线、突

出显示和角度等功能

> scatterplot3d(wt,disp,mpg, pch=16,highlight.3d=TRUE,type="h",main="3dscatter plot with vertical lines")

添加一个回归面

> s3d<-scatterplot3d(wt,disp,mpg,pch=16, highlight.3d=TRUE, type="h", main="3dscatter plot with vertical lines")
> fit<-lm(mpg~wt+disp)
> s3d$plane3d(fit)

旋转三维散点图

用rgl包中的plot3d()函数创建可交互的三维散点图。你能通过鼠标对图形进

行旋转。函数格式为:plot3d(x,y,z)

其中xyz是数值型向量,代表着各个点。你还可以添加如col和size这类的选项来分别控制

点的颜色和大小。

> library(rgl)
> attach(mtcars)
> plot3d(wt,disp,mpg,col="red",size=5)

也可以使用Rcmdr包中类似的函数scatter3d():

> library(Rcmdr)
> attach(mtcars)
> scatter3d(wt,disp,mpg)

scatter3d()函数可包含各种回归曲面,比如线性、二次、平滑和附加等类型。图形默认添

加线性平面。另外,函数中还有可用于交互式识别点的选项。

11.1.4 气泡图

三维散点图来展示三个定量变量间的关系。现在介绍另外一种思路:先创建一个二维散点图,然后用点的大小来代表第三个变量的值。这便是气泡图(bubble plot)。

你可用symbols()函数来创建气泡图。该函数可以在指定的(x, y)坐标上绘制圆圈图、方形

图、星形图、温度计图和箱线图。以绘制圆圈图为例:

Symbols(x,y,circle=radius)

其中xyradius是需要设定的向量,分别表示xy坐标和圆圈半径。

用面积而不是半径来表示第三个变量,那么按照圆圈半径的公式(r = A / π )变

换即可:Symbols(x,y,circle=sqrt(z/pi))z即第三个要绘制的变量。

> attach(mtcars)
> r<-sqrt(disp/pi)
> symbols(wt,mpg,circle=r,inches=.3,#比例因子,控制着圆圈大小(默认最大圆圈为1英寸)
+ fg="white",bg="lightblue", main="bubble plotwith point size\n proportional to displacement", ylab="miles pergallon", xlab="weight of car(lbs/1000")
> text(wt,mpg,rownames(mtcars),cex=.6)#可选函数,此处用来添加各个汽车的名称
> detach(mtcars)


求关注 求扩散亲朋好友

时间: 2024-11-06 13:51:59

R in action读书笔记(14)第十一章 中级绘图 之一:散点图(高能预警)的相关文章

R in action读书笔记(15)第十一章 中级绘图 之二 折线图 相关图 马赛克图

第十一章 中级绘图 本节用到的函数有: plot legend corrgram mosaic 11.2折线图 如果将散点图上的点从左往右连接起来,那么就会得到一个折线图. 创建散点图和折线图: > opar<-par(no.readonly=TRUE) > par(mfrow=c(1,2)) > t1<-subset(Orange,Tree==1) > plot(t1$age,t1$circumference,xlab="Age(days)",yl

R in action读书笔记(19)第十四章 主成分和因子分析

第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法.它通过寻找一组更小的.潜在的或隐藏的结构来解释已观测到的.显式的变量间的关系. PCA与EFA模型间的区别 主成分(PC1和PC2)是观测变量(X1到X5)的线性组合.形成线性组合的权重都是通过最大化各主成分所解释的方差来获得,同时还要保证个

R in action读书笔记(5)-第七章:基本统计分析

7.1描述性统计分析 > vars<-c("mpg","hp","wt") > head(mtcars[vars])                    mpg  hp    wt Mazda RX4         21.0 110 2.620 Mazda RX4 Wag     21.0 110 2.875 Datsun 710        22.8  93 2.320 Hornet 4 Drive    21.4 11

R in action读书笔记(6)-第七章:基本统计分析(中)

7.2 频数表和列联表 > library(vcd) > head(Arthritis) ID Treatment Sex Age Improved 1 57 Treated Male 27 Some 2 46 Treated Male 29 None 3 77 Treated Male 30 None 4 17 Treated Male 32 Marked 5 36 Treated Male 46 Marked 6 23 Treated Male 58 Marked 7.2.1 生成频数表

R in action读书笔记(22)第十六章 高级图形进阶(下)

16.2.4 图形参数 在lattice图形中,lattice函数默认的图形参数包含在一个很大的列表对象中,你可通过trellis.par.get()函数来获取,并用trellis.par.set()函数来修改.show.settings()函数可展示当前的图形参数设置情况.查看当前的默认设置,并将它们存储到一个mysettings列表中: > show.settings() > mysettings<-trellis.par.get() 查看叠加点的默认设置值: > mysett

R in action读书笔记(17)第十二章 重抽样与自助法

12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相关性的置换检验. logregperm包提供了Logistic回归的置换检验.另外一个非常重要的包是glmperm,它涵盖了广义线性模型的置换检验依靠基础的抽样分布理论知识,置换检验提供了另外一个十分强大的可选检验思路.对于上面描述的每一种置换检验,我们完全可以在做统计假设检验时不理会正态分布.t分

R in action读书笔记(6)-第七章:基本统计分析(下)

7.3相关 相关系数可以用来描述定量变量之间的关系.相关系数的符号(±)表明关系的方向(正相关或负相关),其值的大小表示关系的强弱程度(完全不相关时为0,完全相关时为1).除了基础安装以外,我们还将使用psych和ggm包. 7.3.1 相关的类型 1.Pearson.Spearman和Kendall相关 Pearson积差相关系数衡量了两个定量变量之间的线性相关程度.Spearman等级相关系数则衡 量分级定序变量之间的相关程度.Kendall’s Tau相关系数也是一种非参数的等级相关度量.

R in action读书笔记(13)第十章 功效分析

功效分析 功效分析可以帮助在给定置信度的情况下,判断检测到给定效应值时所需的样本量.反过来,它也可以帮助你在给定置信度水平情况下,计算在某样本量内能检测到给定效应值的概率.如果概率低得难以接受,修改或者放弃这个实验将是一个明智的选择. 10.1假设检验速览 在研究过程时,研究者通常关注四个量:样本大小.显著性水平.功效和效应值.样本大小指的是实验设计中每种条件/组中观测的数目.显著性水平(也称为alpha)由I型错误的概率来定义.也可以把它看做是发现效应不发生的概率.功效通过1减去II型错误的概

R in action读书笔记(21)第十六章 高级图形进阶(上)

16.1 R 中的四种图形系统 基础图形函数可自动调用,而grid和lattice函数的调用必须要加载相应的包(如library(lattice)).要调用ggplot2函数需下载并安装该包(install.packages("ggplot2")),第一次使用前还要进行加载(library(ggplot2)). 16.2 lattice 包 lattice包为单变量和多变量数据的可视化提供了一个全面的图形系统.在一个或多个其他变量的条件下,栅栏图形展示某个变量的分布或与其他变量间的关系