深入理解 Java 虚拟机之学习笔记(3)

垃圾回收(Garbage Collection,GC ),GC的历史其实比Java久远,1960年诞生与MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言。当Lisp还在胚胎时期时,人们就在思考GC需要完成的3件事情:

  • 哪些内存需要回收?
  • 什么时候回收?
  • 如何回收?

  :经过半个多世纪的发展,目前内存的动态分配与内存回收技术已经相当成熟,一切看起来都进入了“自动化”时代,为何我们还要去了解GC和内存分配呢?

  :当需要排查各种内存溢出、内存泄露问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就需要对这些“自动化”的技术实施必要的监控和调节。

  确定GC回收的区域:

  (1)程序计数器、虚拟机栈、本地方法栈这3个区域随线程而生,随线程而灭。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的,因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑回收的问题,因为方法结束或线程结束时,内存自然就跟着回收了。

  (2)Java堆(Heap)和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样,我们只有在程序处于运行期间时才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的是这部分内存。

1.判断对象是否存活的算法之一:引用计数算法。

  算法思想以及应用分析:

  (1)给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。

  (2)客观地说,引用计数算法的实现简单,判定效率也很高,在大部分情况下都是一个不错的算法,也有一些著名的应用案例,例如微软公司的COM(Component Object Model)技术、使用ActionScript 3的Flashplayer、Python语言和在游戏脚本领域被广泛应用的Squirrel中都使用了引用计数算法进行内存管理。

  (3)但是主流的Java虚拟机里面没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间相互循环引用的问题。

2.针对对象之间相互循环引用的问题进行的实验如下图所示:

  

   从上面的运行结果可以得到,GC日志中包含的“8028K->512K”,意味着虚拟机并没有因为这两个对象互相引用就不回收它们,这也从侧面说明虚拟机并不是通过引用计数算法来判断对象是否存活的。

3.判断对象是否存活的算法之一: 可达性分析算法。

  算法思想及应用:

  (1)这个算法基本思想就是通过一系列的成为“GC Roots”的对象作为起始点,从这些节点开始向下搜素,搜素所做过的路径成为引用链(Reference Chain)。当一个对象到GC Roots没有任何引用链相连(图论中为从GC Root到这个对象不可达)时,则证明此对象是不可用的。如下图所示:

  

  (2)在Java语言中,可作为GC Roots的对象包括下面:

    a.虚拟机栈(栈帧中的本地变量表)中引用的对象。

    b.方法区中类静态属性引用的对象。

    c.方法区中常量引用的对象。

    d.本地方法栈中JNI(Native 方法)引用的方法。

(3)在主流的商用程序语言(Java、C#,甚至包括前面提到的古老的Lisp)的主流实现中,都是称通过可达性分析(Reachability Analysis)来判定对象是否存活的。

4. 再谈引用

  引用的定义:在JDK 1.2以前,Java中的引用定义很传统:如果reference类型的数据存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用。

问题出现了:当描述这样的一类对象:当内存空间还足够时,则能保留在内存之中,如果内存空间在进行垃圾收集后还是非常紧张,则可以抛弃这些对象。此时的引用就显得过于狭隘。因此在JDK 1.2之后,Java堆引用的概念进行了扩充。

强引用 Strong Reference 类似Object obj = new Object() 只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象
软引用 Soft Reference 描述一些还有用但并非必须的对象 在系统将要发生内存溢出的异常之前,将会把这些对象列进回收范围之中进行第二次回收。如果这次回收还没有足够的内存,才会抛出内存溢出异常
弱引用 Wear Reference 用来描述非必须对象,强度比软引用更弱。被弱引用关联的对象只能生存到下一次垃圾收集发生之前 当垃圾收集器工作时,无论当前内存是否足够,都会回收掉纸杯弱引用关联的对象
虚引用 Phantom Reference 又称为幽灵引用或幻影引用,最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。 为一个对象设置虚引用关联的卫衣目的就是能在这个对象被收集器回收时收到一个系统通知
时间: 2024-10-12 07:11:53

深入理解 Java 虚拟机之学习笔记(3)的相关文章

(转)《深入理解java虚拟机》学习笔记5——Java Class类文件结构

Java语言从诞生之时就宣称一次编写,到处运行的跨平台特性,其实现原理是源码文件并没有直接编译成机器指令,而是编译成Java虚拟机可以识别和运行的字节码文件(Class类文件,*.class),字节码文件是一种平台无关的中间编译结果,字节码文件由java虚拟机读取,解析和执行,java虚拟机屏蔽了不同操作系统和硬件平台的差异性. 如今的java虚拟机已经称为一种通用平台,不但能够运行java语言,Groovy,JRuby,Jython等一大批动态语言也可以直接在Java虚拟机上运行,其原理也是这

深入理解 Java 虚拟机之学习笔记(1)

本书结构: 从宏观的角度介绍了整个Java技术体系.Java和JVM的发展历程.模块化,以及JDK的编译 讲解了JVM的自动内存管理,包括虚拟机内存区域的划分原理以及各种内存溢出异常产生的原因 分析了虚拟机的执行子系统,包括类文件结构.虚拟机类加载机制.虚拟机字节码执行引擎 讲解了程序的编译与代码的优化,阐述了泛型.自动装箱拆箱.条件编译等语法糖的原理 讲解了虚拟机的热点探测方法.HotSpot的即时编译器.编译触发条件,以及如何从虚拟机外部观察和分析JIT编译的数据和结果 探讨了Java实现高

《深入理解Java虚拟机》学习笔记(二)

垃圾回收的前提是判断对象是否存活,对象不再存活时将会被回收,下面是2种判断的方法. 引用计数法: 主流的Java虚拟机并没有使用引用计数法来管理内存,重要的原因就是循环引用的问题难以解决. 可达性分析法: 这个算法的基本思路是:通过一系列称为“GC Roots”的对象作为起始点,向下搜索,走过的路径称为引用链,当对象到GC Roots没有任何的引用链时,则认为对象是可以被回收的. Java中,可以作为GC Roots的对象包括: 1>虚拟机栈中引用的对象 2>方法区中静态属性引用的对象 3&g

《深入理解Java虚拟机》学习笔记(一)

JDK是支持Java程序开发的最小环境集,JRE是支持Java程序运行的标准环境,JRE是JDK的一部分. Java 1.0版本诞生于1995年,其使用的虚拟机是Sun Classisc VM,这款虚拟机已经不再使用.JDK1.3时,HotSpot VM成为了默认的虚拟机.其他较为出名的Java虚拟机还包括JRockit.J9等. JDK1.5中的java.util.concurrent包实现了一个粗粒度的并发框架,JDK1.7中的java.util.concurrent.forkjoin包则是

转《深入理解Java虚拟机》学习笔记之最后总结

编译器 Java是编译型语言,按照编译的时期不同,编译器可分为: 前端编译器:其实叫编译器的前端更合适些,它把*.java文件转变成*.class文件,如Sun的Javac.Eclipse JDT中的增量式编译器ECJ: JIT编译器:虚拟机的后端运行期编译器(Just In Time Compiler),它把字节码转变成机器码,如HotSpot VMd C1.C2编译器: AOT编译器:静态提前编译器(Ahead Of Time Compiler),它直接把*.java文件编译成本地机器码,如

(转)《深入理解java虚拟机》学习笔记10——并发编程(二)

Java的并发编程是依赖虚拟机内存模型的三个特性实现的: (1).原子性(Atomicity): 原子性是指不可再分的最小操作指令,即单条机器指令,原子性操作任意时刻只能有一个线程,因此是线程安全的. Java内存模型中通过read.load.assign.use.store和write这6个操作保证变量的原子性操作. long和double这两个64位长度的数据类型java虚拟机并没有强制规定他们的read.load.store和write操作的原子性,即所谓的非原子性协定,但是目前的各种商业

(转)《深入理解java虚拟机》学习笔记9——并发编程(一)

随着多核CPU的高速发展,为了充分利用硬件的计算资源,操作系统的并发多任务功能正变得越来越重要,但是CPU在进行计算时,还需要从内存读取输出,并将计算结果存放到内存中,然而由于CPU的运算速度比内存高几个数量级,CPU内的寄存器数量和容量有限,为了不让CPU长时间处于等待内存的空闲状态,在CPU和内存之间引入了速度接近CPU的高速缓存Cache作为CPU和内存之间的缓冲.计算机硬件并发的原理如下: Java虚拟机对并发的支持类似于计算机硬件,java虚拟机的并发支持是通过java虚拟机的内存模型

(转)《深入理解java虚拟机》学习笔记4——Java虚拟机垃圾收集器

Java堆内存被划分为新生代和年老代两部分,新生代主要使用复制和标记-清除垃圾回收算法,年老代主要使用标记-整理垃圾回收算法,因此java虚拟中针对新生代和年老代分别提供了多种不同的垃圾收集器,JDK1.6中Sun HotSpot虚拟机的垃圾收集器如下: 图中如果两个垃圾收集器直接有连线,则表明这两个垃圾收集器可以搭配使用. (1).Serial垃圾收集器: Serial是最基本.历史最悠久的垃圾收集器,使用复制算法,曾经是JDK1.3.1之前新生代唯一的垃圾收集器. Serial是一个单线程的

(转)《深入理解java虚拟机》学习笔记3——垃圾回收算法

Java虚拟机的内存区域中,程序计数器.虚拟机栈和本地方法栈三个区域是线程私有的,随线程生而生,随线程灭而灭:栈中的栈帧随着方法的进入和退出而进行入栈和出栈操作,每个栈帧中分配多少内存基本上是在类结构确定下来时就已知的,因此这三个区域的内存分配和回收都具有确定性.垃圾回收重点关注的是堆和方法区部分的内存. 常用的垃圾回收算法有: (1).引用计数算法: 给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器都为0的对象就是不再被使用的,垃