uva1626 poj 1141 Brackets Sequence 区间dp 打印路径

// poj 1141 Brackets Sequence
// 也是在紫书上看的一题,uva就是多了一个t组数据。
// 经典区间dp
// dp(i,j)表示区间[i,j]内所需要增加的括号数目
// 则分为两种情况
// 一种是s[i]和s[j]是匹配的则
// dp[i][j] = min(dp[i][j],dp[i+1][j-1])
// 另外一种情况是不匹配
// dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]){i<k<j};
// 但是无论如何都要进行第二种情况
// 比如[][]这种情况
//
// 这题其实还是挺简单的,但是就是打印的方法可能有点复杂
// 递归打印果然是神奇的东西啊
//
// 顺便说一句,数据有点坑,有空串的情况,我因此wa了将近一个小时
//
// 学到了递归打印,简单的区间dp
//
// 哎,继续练吧。。。。
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfloat>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#define ceil(a,b) (((a)+(b)-1)/(b))
#define endl '\n'
#define gcd __gcd
#define highBit(x) (1ULL<<(63-__builtin_clzll(x)))
#define popCount __builtin_popcountll
typedef long long ll;
using namespace std;
const int MOD = 1000000007;
const long double PI = acos(-1.L);

template<class T> inline T lcm(const T& a, const T& b) { return a/gcd(a, b)*b; }
template<class T> inline T lowBit(const T& x) { return x&-x; }
template<class T> inline T maximize(T& a, const T& b) { return a=a<b?b:a; }
template<class T> inline T minimize(T& a, const T& b) { return a=a<b?a:b; }

const int maxn = 1008;
int d[maxn][maxn];
char s[maxn];
int n;
const int inf = 0x4f4f4f4f;
bool match(char a,char b){
	if (a=='(' && b==')')
		return true;
	if (a=='[' && b==']')
		return true;
	return false;
}
int dp(int i,int j){
	if (i==j)	return d[i][j];
	if (i>j)	return d[i][j] = 0;
	if (d[i][j]!=inf)	return d[i][j];
	int& ans = d[i][j];
	if (match(s[i],s[j]))
		ans = min(ans,dp(i+1,j-1));
	for (int k=i;k<j;k++)
		ans = min(ans,dp(i,k)+dp(k+1,j));
	return ans;
}

void print(int i,int j){
	if (i>j)	return ;
	if (i==j){
		if (s[i]=='('||s[i]==')')	printf("()");
		else printf("[]");
		return ;
	}
	int ans = d[i][j];
	if (match(s[i],s[j]) && ans == d[i+1][j-1]){
		printf("%c",s[i]);
		print(i+1,j-1);
		printf("%c",s[j]);
		return ;
	}
	for (int k=i;k<j;k++){
		if (ans == d[i][k]+d[k+1][j]){
			print(i,k);
			print(k+1,j);
			return ;
		}
	}
}

void init(){
	n = strlen(s);
	for (int i=0;i<=n;i++)
		for (int j=0;j<=n;j++)
			d[i][j] = inf;
	for (int i=0;i<=n;i++){
		d[i][i] = 1;
	}
	dp(0,n-1);
	print(0,n-1);
	puts("");
}

int main() {
	//freopen("G:\\Code\\1.txt","r",stdin);
	while(gets(s)){
	    if (s[0])
            init();
        else puts("");
	}
	return 0;
}

时间: 2024-10-22 03:03:25

uva1626 poj 1141 Brackets Sequence 区间dp 打印路径的相关文章

POJ 1141 Brackets Sequence (区间dp 记录路径)

题目大意: 给出一种不合法的括号序列,要求构造出一种合法的序列,使得填充的括号最少. 思路分析: 如果只要求输出最少的匹配括号的数量,那么就是简单的区间dp dp[i][j]表示 i - j 之间已经合法了最少添加的括号数. 转移 就是 dp[i] [j] = min  (dp[i+1][j]+1 , dp[ i+ 1] [ k -1 ] + dp[k+1] [j] (i k 位置的括号匹配)) 其次我们要记录路径,你发现  如果 dp [i] [j] 是由 dp [i+1] [j] 转移过来的

poj 1141 Brackets Sequence (区间DP)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25893   Accepted: 7295   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence 区间dp,分块记录

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 10139   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a r

[ACM] POJ 1141 Brackets Sequence (区间动态规划)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25087   Accepted: 7069   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

POJ 1141 Brackets Sequence (线性dp 括号匹配 经典题)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26407   Accepted: 7443   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence(线性dp)

题意:给出一个括号串,求最短的满足要求的括号串: 思路:枚举长度,枚举起点和终点,找到匹配括号是可递推到子序列,枚举中间指针求最优解:打印时通过记忆表path存储最优解,递归求出最短序列: #include<cstdio> #include<cstring> #include<algorithm> #define INF 0x7fffffff using namespace std; char str[505]; int dp[505][505]; int path[5

POJ #1141 - Brackets Sequence - TODO: POJ website issue

A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most"\"least" problems can be solved using DP.. Reference: http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html There's an important details to AC:

ZOJ1463:Brackets Sequence(区间DP)

Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, then AB is a regular sequence. F

POJ 1141 Brackets Sequence (区间DP)

Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, then AB is a regular