ADHD数据预处理之重采样

1.准备工作:

定义AAL模板26个小脑作为ROI:

这样得到原始91AAL  因为Mask不匹配,所以需要重采样。

2,resample

打开后,Data Directiory   选择刚得到的90AAL数据,OutputDir   选择存放数据:

这样既可得到重采样后小脑90AAL数据。以此类推,我们便可得到26个脑区AAL。用他们作为define  ROI,可以提取数据中26个小脑区时间序列



ADHD数据预处理之重采样

时间: 2024-12-27 03:50:46

ADHD数据预处理之重采样的相关文章

数据预处理(完整步骤)

原文:http://dataunion.org/5009.html 一:为什么要预处理数据?(1)现实世界的数据是肮脏的(不完整,含噪声,不一致)(2)没有高质量的数据,就没有高质量的挖掘结果(高质量的决策必须依赖于高质量的数据:数据仓库需要对高质量的数据进行一致地集成)(3)原始数据中存在的问题:不一致 —— 数据内含出现不一致情况重复不完整 —— 感兴趣的属性没有含噪声 —— 数据中存在着错误.或异常(偏离期望值)的数据高维度二:数据预处理的方法(1)数据清洗 —— 去噪声和无关数据(2)数

数据挖掘概念与技术读书笔记(三)数据预处理

3.1 数据预处理 数据质量的三个要素:准确性.完整性和一致性. 3.1.2 数据预处理的主要任务 数据清理:填写缺失的值,光滑噪声数据,识别或删除离群点,并解决不一致性来”清理“数据. 数据集成: 数据归约: 3.2 数据清理 3.2.1 缺失值 1.忽略元组 2.人工填写缺失值 3.使用一个全局常量填充缺失值 4.使用属性的中心度量填充缺失值:中位数 5.使用与给定元组属同一类的所有样本的属性均值或中位数 6.使用最可能的值填充缺失值:回归/贝叶斯/决策树 第6种是最流行的策略 3.2.2

《数据挖掘概念与技术》--第三章 数据预处理

一.数据预处理 1.数据如果能够满足其应用的要求,那么他是高质量的. 数据质量涉及许多因素:准确性.完整性.一致性.时效性.可信性.可解释性. 2.数据预处理的主要任务:数据清洗.数据集成.数据规约.数据变换. 二.数据清理:试图填充缺失值,光滑噪声.识别利群点.纠正数据中的不一致. 1.缺失值的处理: 1)忽略元组:缺少类标号时通常这么做.但是忽略的元组其他属性也不能用,即便是有用的. 2)人工填写:该方法很费事费时,数据集很大.缺失值很多时可能行不通. 3)使用一个全局常量填充缺失值:将缺失

WEKA中的数据预处理

数据预处理包括数据的缺失值处理.标准化.规范化和离散化处理. 数据的缺失值处理:weka.filters.unsupervised.attribute.ReplaceMissingValues. 对于数值属性,用平均值代替缺失值,对于nominal属性,用它的mode(出现最多的值)来代替缺失值. 标准化(standardize):类weka.filters.unsupervised.attribute.Standardize.标准化给定数据集中所有数值属性的值到一个0均值和单位方差的正态分布.

sklearn数据预处理-scale

对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as np 测试数据: X = np.array([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]]) 使用sklearn进行scale处理时,有两种方式可供选择. 方式1:直接使用preprocessing.scale()方法: X_scaled = preproc

数据预处理技术

数据预处理技术数据清理:空缺值处理.格式标准化.异常数据清除.错误纠正.重复数据的清除数据集成:将多个数据源中的数据结合起来并统一存储,建立数据仓库的过程实际上就是数据集成.数据变换:平滑.聚集.规范化.最小 最大规范化等数据归约:维归(删除不相关的属性(维)).数据压缩(PCA,LDA,SVD.小波变换).数值归约(回归和对数线形模型.线形回归.对数线形模型.直方图)数据离散化和概念分层 1.数据清理:格式标准化.异常数据清除.错误纠正.重复数据的清除通过填写空缺值,平滑噪声数据,识别删除孤立

【机器学习】数据预处理之将类别数据转换为数值

在进行python数据分析的时候,首先要进行数据预处理. 有时候不得不处理一些非数值类别的数据,嗯, 今天要说的就是面对这些数据该如何处理. 目前了解到的大概有三种方法: 1,通过LabelEncoder来进行快速的转换: 2,通过mapping方式,将类别映射为数值.不过这种方法适用范围有限: 3,通过get_dummies方法来转换. 1 import pandas as pd 2 from io import StringIO 3 4 csv_data = '''A,B,C,D 5 1,2

第七篇:数据预处理(四) - 数据归约(PCA/EFA为例)

前言 这部分也许是数据预处理最为关键的一个阶段. 如何对数据降维是一个很有挑战,很有深度的话题,很多理论书本均有详细深入的讲解分析. 本文仅介绍主成分分析法(PCA)和探索性因子分析法(EFA),并给出具体的实现步骤. 主成分分析法 - PCA 主成分分析(principal components analysis, PCA)是一种分析.简化数据集的技术. 它把原始数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次

机器学习之数据预处理

归一化处理 from sklearn.preprocessing import StandardScaler X_scaler = StandardScaler() y_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) y_train = y_scaler.fit_transform(y_train) X_test = X_scaler.transform(X_test) #同样的模型来训练转化测试数据 y_t