Codeforces Round #388 (Div. 2) C

There are n employees in Alternative Cake Manufacturing (ACM). They are now voting on some very important question and the leading world media are trying to predict the outcome of the vote.

Each of the employees belongs to one of two fractions: depublicans or remocrats, and these two fractions have opposite opinions on what should be the outcome of the vote. The voting procedure is rather complicated:

  1. Each of n employees makes a statement. They make statements one by one starting from employees 1 and finishing with employee n. If at the moment when it‘s time for the i-th employee to make a statement he no longer has the right to vote, he just skips his turn (and no longer takes part in this voting).
  2. When employee makes a statement, he can do nothing or declare that one of the other employees no longer has a right to vote. It‘s allowed to deny from voting people who already made the statement or people who are only waiting to do so. If someone is denied from voting he no longer participates in the voting till the very end.
  3. When all employees are done with their statements, the procedure repeats: again, each employees starting from 1 and finishing with n who are still eligible to vote make their statements.
  4. The process repeats until there is only one employee eligible to vote remaining and he determines the outcome of the whole voting. Of course, he votes for the decision suitable for his fraction.

You know the order employees are going to vote and that they behave optimal (and they also know the order and who belongs to which fraction). Predict the outcome of the vote.

Input

The first line of the input contains a single integer n (1?≤?n?≤?200?000) — the number of employees.

The next line contains n characters. The i-th character is ‘D‘ if the i-th employee is from depublicans fraction or ‘R‘ if he is from remocrats.

Output

Print ‘D‘ if the outcome of the vote will be suitable for depublicans and ‘R‘ if remocrats will win.

Examples

input

5DDRRR

output

D

input

6DDRRRR

output

R

Note

Consider one of the voting scenarios for the first sample:

  1. Employee 1 denies employee 5 to vote.
  2. Employee 2 denies employee 3 to vote.
  3. Employee 3 has no right to vote and skips his turn (he was denied by employee 2).
  4. Employee 4 denies employee 2 to vote.
  5. Employee 5 has no right to vote and skips his turn (he was denied by employee 1).
  6. Employee 1 denies employee 4.
  7. Only employee 1 now has the right to vote so the voting ends with the victory of depublicans.

题意:可能有点难懂,说的是有两个分派R和D

样列:DDRRR

第一个是D表态说第五个人出局(R),那么出局人没有表态权利

第二个是D表态说第三个人出局(R),同上

那么剩下4(R),说第二个人出局(D)

一轮结束

第二局第一个人说第四个人出局,好,R全军覆没,D保留

问的也是最后保留的是谁

解法:

1 自己人当然不能让自己人出局啊

2 有机会轮到自己时,一定是让对方出局,最容易想到的是让离自己最近的对方出局,例如第一个D让第三个R出局

3 直到有一个全军覆没,保留的胜利

4 那么就算一个模拟贪心,实际上最多也就玩两次也有结果了,用vector超时了,改set

 1 #include<bits/stdc++.h>
 2 typedef long long LL;
 3 typedef unsigned long long ULL;
 4 typedef long double LD;
 5 using namespace std;
 6 set<int>Md,Mr;
 7 int flag[400000];
 8 int main(){
 9     int n;
10     string s;
11     cin>>n>>s;
12     for(int i=0;i<n;i++){
13         if(s[i]==‘D‘){
14             Md.insert(i);
15         }else{
16             Mr.insert(i);
17         }
18     }
19     int i=-1;
20     while(Md.size()&&Mr.size()){
21         i=(i+1)%n;
22         if(flag[i]) continue;
23         if(s[i]==‘D‘){
24             auto it=Mr.upper_bound(i);
25             if(it==Mr.end()){
26                 it=Mr.begin();
27             }
28             flag[*it]=1;
29             Mr.erase(it);
30         }else{
31             auto it=Md.upper_bound(i);
32             if(it==Md.end()){
33                 it=Md.begin();
34             }
35             flag[*it]=1;
36             Md.erase(it);
37         }
38     }
39     if(Md.size()){
40         cout<<"D"<<endl;
41     }else{
42         cout<<"R"<<endl;
43     }
44     return 0;
45 }
时间: 2024-12-17 04:28:45

Codeforces Round #388 (Div. 2) C的相关文章

Codeforces Round #388 (Div. 2) C. Voting

题意:有n个人,每个人要么是属于D派要么就是R派的.从编号1开始按顺序,每个人都有一次机会可以剔除其他任何一个人(被剔除的人就不在序列中也就失去了剔除其他人的机会了):当轮完一遍后就再次从头从仅存的人中从编号最小开始重复执行上述操作,直至仅存在一派,问最后获胜的是哪一派? 并且,题目假设每个人的选择是最优的,即每个人的操作都是会尽可能的让自己所属的派获胜的. 题解: 一开始看到说每个人的操作都会是最优的还以为是个博弈(=_=),,,仔细琢磨了下样例发现并不用,只要贪心模拟就行了.贪心的策略并不难

Codeforces Round #388 (Div. 2) D

There are n people taking part in auction today. The rules of auction are classical. There were n bids made, though it's not guaranteed they were from different people. It might happen that some people made no bids at all. Each bid is define by two i

Codeforces Round #388 (Div. 2) 749E(巧妙的概率dp思想)

题目大意 给定一个1到n的排列,然后随机选取一个区间,让这个区间内的数随机改变顺序,问这样的一次操作后,该排列的逆序数的期望是多少 首先,一个随机的长度为len的排列的逆序数是(len)*(len-1)/4,这是显然的,因为每种排列倒序一遍就会得到一个新序列,逆序数是len*(len-1)/2 - x(x为原排列的逆序数) 所以我们只需要把所有n*(n-1)/2的区间每种情况都随机化一遍再求逆序对,然后把这个值求和,就可以得到答案了 但是如果用朴素做法,那么复杂度是n^2的 考虑dp[x]表示以

Codeforces Round #388 (Div. 2) B

Long time ago Alex created an interesting problem about parallelogram. The input data for this problem contained four integer points on the Cartesian plane, that defined the set of vertices of some non-degenerate (positive area) parallelogram. Points

Codeforces Round #388 (Div. 2) A

Bachgold problem is very easy to formulate. Given a positive integer n represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer k is called pr

Codeforces Round #279 (Div. 2) ABCD

Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name     A Team Olympiad standard input/output 1 s, 256 MB  x2377 B Queue standard input/output 2 s, 256 MB  x1250 C Hacking Cypher standard input/output 1 s, 256 MB  x740 D Chocolate standard input/

Codeforces Round #428 (Div. 2)

Codeforces Round #428 (Div. 2) A    看懂题目意思就知道做了 #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a; i<=b; ++i) #define per(i,b,a) for (int i=b; i>=a; --i

Codeforces Round #424 (Div. 2) D. Office Keys(dp)

题目链接:Codeforces Round #424 (Div. 2) D. Office Keys 题意: 在一条轴上有n个人,和m个钥匙,门在s位置. 现在每个人走单位距离需要单位时间. 每个钥匙只能被一个人拿. 求全部的人拿到钥匙并且走到门的最短时间. 题解: 显然没有交叉的情况,因为如果交叉的话可能不是最优解. 然后考虑dp[i][j]表示第i个人拿了第j把钥匙,然后 dp[i][j]=max(val(i,j),min(dp[i-1][i-1~j]))   val(i,j)表示第i个人拿

Codeforces Round #424 (Div. 2) C. Jury Marks(乱搞)

题目链接:Codeforces Round #424 (Div. 2) C. Jury Marks 题意: 给你一个有n个数序列,现在让你确定一个x,使得x通过挨着加这个序列的每一个数能出现所有给出的k个数. 问合法的x有多少个.题目保证这k个数完全不同. 题解: 显然,要将这n个数求一下前缀和,并且排一下序,这样,能出现的数就可以表示为x+a,x+b,x+c了. 这里 x+a,x+b,x+c是递增的.这里我把这个序列叫做A序列 然后对于给出的k个数,我们也排一下序,这里我把它叫做B序列,如果我