梯度提升树中的负梯度和残差关系

我们希望找到一个  使得  最小,那么  就得沿着使损失函数L减小的方向变化,即:

同时,最新的学习器是由当前学习器  与本次要产生的回归树 相加得到的:

因此,为了让损失函数减小,需要令:

即用损失函数对f(x)的负梯度来拟合回归树。

原文地址:https://www.cnblogs.com/duan-decode/p/9889955.html

时间: 2024-10-26 20:39:31

梯度提升树中的负梯度和残差关系的相关文章

集成学习之梯度提升树(GBDT)算法

梯度提升树(GBDT)的全称是Gradient Boosting Decision Tree.GBDT还有很多的简称,例如GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ),GBRT(Gradient Boosting Regression Tree), MART(Multiple Additive Regression Tree)等,其实都是指的同一种算法,本文统一简称GBDT. GBDT 也是 Boosting 算法的一种,但是

04-06 梯度提升树

目录 梯度提升树 一.梯度提升树学习目标 二.梯度提升树详解 2.1 梯度提升树和提升树 三.回归梯度提升树流程 3.1 输入 3.2 输出 3.3 流程 四.梯度提升树优缺点 4.1 优点 4.2 缺点 五.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 梯度提升树 梯度提升树(gradien boosting decision tree,GBDT)在工业上用

Spark2.0机器学习系列之6:GBDT(梯度提升决策树)、GBDT与随机森林差异、参数调试及Scikit代码分析

概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman. 研究GBDT一定要看看Friedman的pa

Kaggle Master解释梯度提升(Gradient Boosting)(译)

如果说线性回归算法像丰田凯美瑞的话,那么梯度提升(GB)方法就像是UH-60黑鹰直升机.XGBoost算法作为GB的一个实现是Kaggle机器学习比赛的常胜将军.不幸的是,很多从业者都只把这个算法当作黑盒使用(包括曾经的我).这篇文章的目的就是直观而全面的介绍经典梯度提升方法的原理. 原理说明 我们先从一个简单的例子开始.我们想要基于是否打电子游戏.是否享受园艺以及是否喜欢戴帽子三个特征来预测一个人的年龄.我们的目标函数是最小化平方和,将用于训练我们模型的训练集如下: ID  年龄   喜欢园艺

提升方法与梯度提升决策树

提升方法与前向分步算法 提升方法 从弱学习算法出发,反复学习,得到一系列弱分类器,然后组合这些弱学习器,提升为强学习器 两个问题: 在每一轮如何改变训练数据的权值或概率分布 如何将弱学习器组合成一个强学习器 前向分步算法 AdaBoost另一种解释: 加法模型 损失函数为指数函数 学习算法为前向分步算法 二类分类学习方法 前向分步算法(Forward Stagewise Algorithm) 考虑加法模型(additive model) \[f(x)=\sum \limits_{m=1}^M \

mllib之随机森林与梯度提升树

随机森林和GBTs都是集成学习算法,它们通过集成多棵决策树来实现强分类器. 集成学习方法就是基于其他的机器学习算法,并把它们有效的组合起来的一种机器学习算法.组合产生的算法相比其中任何一种算法模型更强大.准确. 随机森林和梯度提升树(GBTs).两者之间主要差别在于每棵树训练的顺序. 随机森林通过对数据随机采样来单独训练每一棵树.这种随机性也使得模型相对于单决策树更健壮,且不易在训练集上产生过拟合. GBTs则一次只训练一棵树,后面每一棵新的决策树逐步矫正前面决策树产生的误差.随着树的添加,模型

笔记︱决策树族——梯度提升树(GBDT)

笔记︱决策树族--梯度提升树(GBDT) 本笔记来源于CDA DSC,L2-R语言课程所学进行的总结. 一.介绍:梯度提升树(Gradient Boost Decision Tree) Boosting算法和树模型的结合.按次序建立多棵树,每棵树都是为了减少上一次的残差(residual),每个新的模型的建立都是为了使之前模型的残差往梯度方向减少.最后将当前得到的决策树与之前的那些决策树合并起来进行预测. 相比随机森林有更多的参数需要调整. ---------------------------

梯度提升树GBDT原理

1.模型 提升方法实际采用加法模型(即基函数的线性组合)与前向分布算法.以决策树为基函数的提升方法称为提升树(boosting tree).对分类问题决策树是二叉分类树,对回归问题决策树是二叉决策树.提升树模型可以表示为决策树的加法模型: 其中,表示决策树:为决策树的参数:M为树的个数 2.学习过程 回归问题提升树使用以下前向分布算法: 在前向分布算法的第m步,给定当前模型,需求解 得到,即第m棵树的参数 当采用平方误差损失函数时, 其损失变为 其中,是当前模型拟合数据的残差(residual)

机器学习(七)—Adaboost 和 梯度提升树GBDT

1.Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络.对于决策树,Adaboost分类用了CART分类树,而Adaboost回归用了CART回归树. Adaboost算法可以简述为三个步骤: (1)首先,是初始化训练数据的权值分布D1.假设有N个训练样本数据,则每一个训练样本最开始时,都被赋予相同的权值:w1=1/N. (2)然后,训练弱分类器hi.具体训练过程中是:如果某个训练样本点,被弱分类器h