[学习]鲁棒性

百度百科,鲁棒性:https://baike.baidu.com/item/%E9%B2%81%E6%A3%92%E6%80%A7/832302?fr=aladdin

个人理解有两层含义:

1.  系统工程中,系统的稳定性。在接受到暴力的恶意的输入时,是否保持原有的功能,性能。 分为稳定鲁棒性,性能鲁棒性。

2.  统计学里,拟合到的回归函数与数据实际的分布情况不符。称为没有鲁棒性?? 英文robustness。

原文地址:https://www.cnblogs.com/hugetong/p/9690406.html

时间: 2025-01-17 14:25:08

[学习]鲁棒性的相关文章

基于深度学习的目标检测研究进展

前言 开始本文内容之前,我们先来看一下上边左侧的这张图,从图中你看到了什么物体?他们在什么位置?这还不简单,图中有一个猫和一个人,具体的位置就是上图右侧图像两个边框(bounding-box)所在的位置.其实刚刚的这个过程就是目标检测,目标检测就是"给定一张图像或者视频帧,找出其中所有目标的位置,并给出每个目标的具体类别". 目标检测对于人来说是再简单不过的任务,但是对于计算机来说,它看到的是一些值为0~255的数组,因而很难直接得到图像中有人或者猫这种高层语义概念,也不清楚目标出现在

scikit_learn 官方文档翻译(集成学习)

1.11. Ensemble methods(集成学习) 目标: 相对于当个学习器,集成学习通过使用多个基学习器的预测结果来来提高学习预测的泛化性能以及鲁棒性: 集成学习的两个思路: 1).通过使用并行的学习,得到多个学习模型然后取其平均结果目的在于减少方差,代表算法有随机森林.通常来说多个学习器的集成要比单个学习器的效果要好多. 2).采用串行的方式生成多个学习器目的在于减少偏差(bias),使用多个弱分类器组合成为一个强分类器,代表算法adaBoosting以及boosting tree.G

视觉机器学习笔记------CNN学习

卷积神经网络是第一个被成功训练的多层神经网络结构,具有较强的容错.自学习及并行处理能力. 一.基本原理 1.CNN算法思想 卷积神经网络可以看作为前馈网络的特例,主要在网络结构上对前馈网络进行简化和改进,从理论上讲,反向传播算法可以用于训练卷积神经网络.卷积神经网络被广泛用于语音识别和图像分类等问题. 2.CNN网络结构 卷积神经网络是一种多层前馈网络,每层由多个二维平面组成.每个平面由多个神经元组成. 网络输入为二维视觉模式,作为网络中间层的卷积层(C)和抽样层(S)交替出现.网络输出层为前馈

视觉机器学习读书笔记--------BP学习

反向传播算法(Back-Propagtion Algorithm)即BP学习属于监督式学习算法,是非常重要的一种人工神经网络学习方法,常被用来训练前馈型多层感知器神经网络. 一.BP学习原理 1.前馈型神经网络 是指网络在处理信息时,信息只能由输入层进入网络,随后逐层向前进行传递,一直到输出层,网络中不存在环路:前馈神经网络是神经网络中的典型分层结构,根据前馈网络中神经元转移函数.网络层数.各层基本单元数目以及权重调整方式的不同,可以形成不同功能特点的神经网络.前馈型神经网络由输入层.中间层(隐

各种音视频编解码学习详解

各种音视频编解码学习详解 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等.最近因为项目的关系,需要理清媒体的codec,比较搞的是,在豆丁网上看运营商的规范 标准,同一运营商同样的业务在不同文档中不同的要求,而且有些要求就我看来应当是历史的延续,也就是现在已经很少采用了.所以豆丁上看不出所以然,从 wiki上查.中文的wiki信息量有限,很短,而wiki的英文内容内多,删减版

手势跟踪论文学习:Realtime and Robust Hand Tracking from Depth

本文介绍的方法主要是用到了深度信息.提出了一种新的手指检测以及手型初始化的方法.具有很好的鲁棒性.在不使用GPU的情况下,速度就可以达到25FPS.准确率还相当的高.可以说是现在手势识别中最好的方法了. 当前的很多方法要不就是很慢,要不就是使用了GPU,再或者就是需要非常复杂的初始化.而本文提出的方法重新定义了手势的模型,结合了现在通用的两种方法的优势,并且加上一个约束方程,得到了很好的效果. 1.模型的重新定义 每一只手,定义了一个自由度(DOF)为26 的手的模型,其中的6个自由度代表全局的

Deep Learning(深度学习)学习笔记整理

申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表示才有用呢? 1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算机的手段,双管齐下,研究视觉问题. 他们收集了很多黑白风景照片,从这些照片中,提取出400个小碎片,每个照片碎片的尺寸均为 16x1

Deep Learning(深度学习)学习笔记整理系列之(八)

Deep Learning(深度学习)学习笔记整理系列 [email protected] http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主

Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法. 而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一个大