C 数据结构堆

引言 - 数据结构堆

  堆结构都很耳熟, 从堆排序优先级队列, 我们总会看见它的身影. 相关的资料太多了,

- https://zh.wikipedia.org/wiki/%E5%A0%86%E7%A9%8D

无数漂亮的图片接二连三, 但目前没搜到一个工程中可以舒服用的代码库. 本文由此痛点而来.

写一篇奇妙数据结构堆的终结代码. 耳熟终究比不过手热 ->---

对于 heap 接口思考, 我是这样设计

#ifndef _H_HEAP
#define _H_HEAP

//
// cmp_f - 比较行为 > 0 or = 0  or < 0
// : int add_cmp(const void * now, const void * node)
//
typedef int (* cmp_f)();

//
// node_f - 销毁行为
// : void list_die(void * node)
//
typedef void (* node_f)(void * node);

//
// head_t 堆的类型结构
//
typedef struct heap * heap_t;

//
// heap_create - 创建符合规则的堆
// fcmp     : 比较行为, 规则 fcmp() <= 0
// return   : 返回创建好的堆对象
//
extern heap_t heap_create(cmp_f fcmp);

//
// heap_delete - 销毁堆
// h        : 堆对象
// fdie     : 销毁行为, 默认 NULL
// return   : void
//
extern void heap_delete(heap_t h, node_f fdie);

//
// heap_insert - 堆插入数据
// h        : 堆对象
// node     : 操作对象
// return   : void
//
extern void heap_insert(heap_t h, void * node);

//
// heap_remove - 堆删除数据
// h        : 堆对象
// arg      : 操作参数
// fcmp     : 比较行为, 规则 fcmp() == 0
// return   : 找到的堆节点
//
extern void * heap_remove(heap_t h, void * arg, cmp_f fcmp);

//
// heap_top - 查看堆顶结点数据
// h        : 堆对象
// return   : 堆顶节点
//
extern void * heap_top(heap_t h);

//
// heap_top - 摘掉堆顶结点数据
// h        : 堆对象
// return   : 返回堆顶节点
//
extern void * heap_pop(heap_t h);

#endif//_H_HEAP

heap_t 是不完全类型实体指针, 其中 struct heap 是这样设计

#include "heap.h"
#include <stdlib.h>
#include <assert.h>

#define UINT_HEAP       (1<<5u)

struct heap {
    cmp_f   fcmp;       // 比较行为
    unsigned len;       // heap 长度
    unsigned cap;       // heap 容量
    void ** data;       // 数据节点数组
};

// heap_expand - 添加节点扩容
inline void heap_expand(struct heap * h) {
    if (h->len >= h->cap) {
        h->data = realloc(h->data, h->cap<<=1);
        assert(h->data);
    }
}

从中可以看出当前堆结构是可以保存 void * 数据. 其中通过 heap::fcmp 比较行为来调整关系.

有了堆的数据结构定义, 那么堆的创建和销毁业务代码就被无脑的确定了 ~

//
// heap_create - 创建符合规则的堆
// fcmp     : 比较行为, 规则 fcmp() <= 0
// return   : 返回创建好的堆对象
//
inline heap_t
heap_create(cmp_f fcmp) {
    struct heap * h = malloc(sizeof(struct heap));
    assert(h && fcmp);
    h->fcmp = fcmp;
    h->len = 0;
    h->cap = UINT_HEAP;
    h->data = malloc(sizeof(void *) * UINT_HEAP);
    assert(h->data && UINT_HEAP > 0);
    return h;
}

//
// heap_delete - 销毁堆
// h        : 堆对象
// fdie     : 销毁行为, 默认 NULL
// return   : void
//
void
heap_delete(heap_t h, node_f fdie) {
    if (NULL == h || h->data == NULL) return;
    if (fdie && h->len > 0)
        for (unsigned i = 0; i < h->len; ++i)
            fdie(h->data[i]);
    free(h->data);
    h->data = NULL;
    h->len = 0;
    free(h);
}

随后将迎接这个终结者堆的全貌. 此刻读者可以先喝口水 : )

前言 - 写一段终结代码

  堆结构中最核心两处就是向下调整向上调整过程代码

// down - 堆节点下沉, 从上到下沉一遍
static void down(cmp_f fcmp, void * data[], unsigned len, unsigned x) {
    void * m = data[x];
    for (unsigned i = x * 2 + 1; i < len; i = x * 2 + 1) {
        if (i + 1 < len && fcmp(data[i+1], data[i]) < 0)
            ++i;
        if (fcmp(m, data[i]) <= 0)
            break;
        data[x] = data[i];
        x = i;
    }
    data[x] = m;
}

// up - 堆节点上浮, 从下到上浮一遍
static void up(cmp_f fcmp, void * node, void * data[], unsigned x) {
    while (x > 0) {
        void * m = data[(x-1)>>1];
         if (fcmp(m, node) <= 0)
            break;
        data[x] = m;
        x = (x-1)>>1;
    }
    data[x] = node;
}

如何理解其中奥妙呢. 可以这么看, 索引 i 节点的左子树索引为 2i+1, 右子树树索引为 2i+2 = (2i+1)+1.

相反的索引为 i 节点的父亲节点就是 (i-1)/2 = (i-1)>>1. 这就是堆节点调整的无上奥妙.  随后的代码就

很轻松出手了

//
// heap_insert - 堆插入数据
// h        : 堆对象
// node     : 操作对象
// return   : void
//
inline void
heap_insert(heap_t h, void * node) {
    heap_expand(h);
    up(h->fcmp, node, h->data, h->len++);
}

//
// heap_top - 查看堆顶结点数据
// h        : 堆对象
// return   : 堆顶节点
//
inline void *
heap_top(heap_t h) {
    return h->len <= 0 ? NULL : *h->data;
}

//
// heap_top - 摘掉堆顶结点数据
// h        : 堆对象
// return   : 返回堆顶节点
//
inline void *
heap_pop(heap_t h) {
    void * node = heap_top(h);
    if (node && --h->len > 0) {
        // 尾巴节点一定比小堆顶节点大, 那么要下沉
        h->data[0] = h->data[h->len];
        down(h->fcmp, h->data, h->len, 0);
    }
    return node;
}

看完上面代码可以再回看下 down 和 up 代码布局. 是不是堆节点调整全部技巧已经了然于胸 ~

随后我们介绍堆删除任意节点大致算法思路

  1‘ 循环遍历, 找到要删除节点

  2‘ 如果删除后堆空, 或者删除的是最后节点, 那直接搞定

  3‘ 最后节点复制到待删除节点位置处

  4‘ 最后节点和待删除节点权值相等, 不调整节点关系

  5‘ 最后节点比待删除节点权值大, 向下调整节点关系(基于小顶堆设计)

  6‘ 最后节点比待删除节点权值小, 向上调整节点关系

从上可以看出堆删除节点算法复杂度是 O(n) + O(logn) = O(n). 请欣赏具体代码

//
// heap_remove - 堆删除数据
// h        : 堆对象
// arg      : 操作参数
// fcmp     : 比较行为, 规则 fcmp() == 0
// return   : 找到的堆节点
//
void *
heap_remove(heap_t h, void * arg, cmp_f fcmp) {
    if (h == NULL || h->len <= 0)
        return NULL;

    // 开始查找这个节点
    unsigned i = 0;
    fcmp = fcmp ? fcmp : h->fcmp;
    do {
        void * node = h->data[i];
        if (fcmp(arg, node) == 0) {
            if (--h->len > 0 && h->len != i) {
                // 尾巴节点和待删除节点比较
                int ret = h->fcmp(h->data[h->len], node);

                // 小顶堆, 新的值比老的值小, 那么上浮
                if (ret < 0)
                    up(h->fcmp, h->data[h->len], h->data, i);
                else if (ret > 0) {
                    // 小顶堆, 新的值比老的值大, 那么下沉
                    h->data[i] = h->data[h->len];
                    down(h->fcmp, h->data, h->len, i);
                }
            }

            return node;
        }
    } while (++i < h->len);

    return NULL;
}

到这堆数据结构基本代码都已经搞定. 开始写写测试用例跑跑

#include "heap.h"
#include <stdio.h>

struct node {
    int value;
};

static inline int node_cmp(const struct node * l, const struct node * r) {
    return l->value - r->value;
}

static void heap_print(heap_t h) {
    struct heap {
        cmp_f   fcmp;       // 比较行为
        unsigned len;       // heap 长度
        unsigned cap;       // heap 容量
        void ** data;       // 数据节点数组
    } * x = (struct heap *)h;

    // 数据打印for (unsigned i = 0; i < x->len; ++i) {
        struct node * node = x->data[i];
        printf("%d ", node->value);
    }
    putchar(‘\n‘);
}

int main() {
    heap_t h = heap_create(node_cmp);
    struct node a[] = { { 53 }, { 17 }, { 78 }, { 9 }, { 45 }, { 65 }, { 87 }, { 23} };
    for (int i = 0; i < sizeof a / sizeof *a; ++i)
        heap_insert(h, a + i);

    heap_print(h);

    // 数据打印
    struct node * node;
    while ((node = heap_pop(h))) {
        printf("%d ", node->value);
    }
    putchar(‘\n‘);

    // 重新插入数据
    for (int i = 0; i < sizeof a / sizeof *a; ++i)
        heap_insert(h, a + i);

    // 删除操作 - 下沉
    heap_remove(h, &(struct node){ 17 }, NULL);
    heap_print(h);

    // 插入操作
    heap_insert(h, &(struct node){ 17 });
    heap_print(h);

    // 删除操作 - 上浮
    heap_remove(h, &(struct node){ 78 }, NULL);
    heap_print(h);

    heap_delete(h, NULL);
    return 0;
}

最终运行结果如下

 

后续堆相关代码变化, 可以参照  heap - https://github.com/wangzhione/structc/blob/master/structc/struct/heap.c

说到引用 github 想起一个 git 好用配置安利给大家 ~ 从此 git ll 就活了.

git config --global color.diff autogit config --global color.status auto
git config --global color.branch auto
git config --global color.interactive auto
git config --global alias.ll "log --graph --all --pretty=format:‘%Cred%h %Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset‘ --abbrev-commit --date=relative"

奇妙数据结构堆, 终结在这里, 后面内容可以忽略. 期待下次再扯了 ~

正文 - 顺带赠送个点心

  其实到这本不该再说什么. 单纯看上面就足够了. 但不知道有没有朋友觉得你总是说 C 数据结构. 效

果好吗? 对技术提升效果明显吗? 这里不妨利用我们对 C 理解, 来分析一个业务代码. 感受下一通百通.

我试着用 Go 中数据结构源码举例子. 重点看下 Go 源码包中 "container/list" 链表用法(比较简单)

package main

import (
	"container/list"
	"fmt"
)

func main() {
	// 构造链表对象
	pers := list.New()

	// Persion 普通人对象
	type Persion struct {
		Name string
		Age  int
	}

	// 链表对象数据填充
	pers.PushBack(&Persion{"wang", 27})
	pers.PushFront(&Persion{"zhi", 27})

	// 开始遍历处理
	for e := pers.Front(); e != nil; e = e.Next() {
		per, ok := e.Value.(*Persion)
		if !ok {
			panic(fmt.Sprint("Persion List faild", e.Value))
		}
		fmt.Println(per)
	}

	for e := pers.Front(); e != nil; {
		next := e.Next()
		pers.Remove(e)
		e = next
	}
	fmt.Println(pers.Len())
}

运行结果是

$ go run list-demo.go
&{zhi 27}
&{wang 27}
0

通过上面演示 Demo, 大致知道了 list 包用法. 随后开始着手解析 "container/list" 源码

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package list implements a doubly linked list.
//
// To iterate over a list (where l is a *List):
//	for e := l.Front(); e != nil; e = e.Next() {
//		// do something with e.Value
//	}
//
package list

// Element is an element of a linked list.
type Element struct {
	// Next and previous pointers in the doubly-linked list of elements.
	// To simplify the implementation, internally a list l is implemented
	// as a ring, such that &l.root is both the next element of the last
	// list element (l.Back()) and the previous element of the first list
	// element (l.Front()).
	next, prev *Element

	// The list to which this element belongs.
	list *List

	// The value stored with this element.
	Value interface{}
}

// Next returns the next list element or nil.
func (e *Element) Next() *Element {
	if p := e.next; e.list != nil && p != &e.list.root {
		return p
	}
	return nil
}

// Prev returns the previous list element or nil.
func (e *Element) Prev() *Element {
	if p := e.prev; e.list != nil && p != &e.list.root {
		return p
	}
	return nil
}

// List represents a doubly linked list.
// The zero value for List is an empty list ready to use.
type List struct {
	root Element // sentinel list element, only &root, root.prev, and root.next are used
	len  int     // current list length excluding (this) sentinel element
}

// Init initializes or clears list l.
func (l *List) Init() *List {
	l.root.next = &l.root
	l.root.prev = &l.root
	l.len = 0
	return l
}

// New returns an initialized list.
func New() *List { return new(List).Init() }

// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *List) Len() int { return l.len }

// Front returns the first element of list l or nil if the list is empty.
func (l *List) Front() *Element {
	if l.len == 0 {
		return nil
	}
	return l.root.next
}

// Back returns the last element of list l or nil if the list is empty.
func (l *List) Back() *Element {
	if l.len == 0 {
		return nil
	}
	return l.root.prev
}

// lazyInit lazily initializes a zero List value.
func (l *List) lazyInit() {
	if l.root.next == nil {
		l.Init()
	}
}

// insert inserts e after at, increments l.len, and returns e.
func (l *List) insert(e, at *Element) *Element {
	n := at.next
	at.next = e
	e.prev = at
	e.next = n
	n.prev = e
	e.list = l
	l.len++
	return e
}

// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *List) insertValue(v interface{}, at *Element) *Element {
	return l.insert(&Element{Value: v}, at)
}

// remove removes e from its list, decrements l.len, and returns e.
func (l *List) remove(e *Element) *Element {
	e.prev.next = e.next
	e.next.prev = e.prev
	e.next = nil // avoid memory leaks
	e.prev = nil // avoid memory leaks
	e.list = nil
	l.len--
	return e
}

// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *List) Remove(e *Element) interface{} {
	if e.list == l {
		// if e.list == l, l must have been initialized when e was inserted
		// in l or l == nil (e is a zero Element) and l.remove will crash
		l.remove(e)
	}
	return e.Value
}

// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *List) PushFront(v interface{}) *Element {
	l.lazyInit()
	return l.insertValue(v, &l.root)
}

// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *List) PushBack(v interface{}) *Element {
	l.lazyInit()
	return l.insertValue(v, l.root.prev)
}

// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertBefore(v interface{}, mark *Element) *Element {
	if mark.list != l {
		return nil
	}
	// see comment in List.Remove about initialization of l
	return l.insertValue(v, mark.prev)
}

// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertAfter(v interface{}, mark *Element) *Element {
	if mark.list != l {
		return nil
	}
	// see comment in List.Remove about initialization of l
	return l.insertValue(v, mark)
}

// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToFront(e *Element) {
	if e.list != l || l.root.next == e {
		return
	}
	// see comment in List.Remove about initialization of l
	l.insert(l.remove(e), &l.root)
}

// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToBack(e *Element) {
	if e.list != l || l.root.prev == e {
		return
	}
	// see comment in List.Remove about initialization of l
	l.insert(l.remove(e), l.root.prev)
}

// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveBefore(e, mark *Element) {
	if e.list != l || e == mark || mark.list != l {
		return
	}
	l.insert(l.remove(e), mark.prev)
}

// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveAfter(e, mark *Element) {
	if e.list != l || e == mark || mark.list != l {
		return
	}
	l.insert(l.remove(e), mark)
}

// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushBackList(other *List) {
	l.lazyInit()
	for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
		l.insertValue(e.Value, l.root.prev)
	}
}

// PushFrontList inserts a copy of an other list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushFrontList(other *List) {
	l.lazyInit()
	for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
		l.insertValue(e.Value, &l.root)
	}
}

list 包中最核心的数据结构无外乎 Element 和 List 互相引用的结构

// Element is an element of a linked list.
type Element struct {
	// Next and previous pointers in the doubly-linked list of elements.
	// To simplify the implementation, internally a list l is implemented
	// as a ring, such that &l.root is both the next element of the last
	// list element (l.Back()) and the previous element of the first list
	// element (l.Front()).
	next, prev *Element

	// The list to which this element belongs.
	list *List

	// The value stored with this element.
	Value interface{}
}

// Next returns the next list element or nil.
func (e *Element) Next() *Element {
	if p := e.next; e.list != nil && p != &e.list.root {
		return p
	}
	return nil
}

// Prev returns the previous list element or nil.
func (e *Element) Prev() *Element {
	if p := e.prev; e.list != nil && p != &e.list.root {
		return p
	}
	return nil
}

// List represents a doubly linked list.
// The zero value for List is an empty list ready to use.
type List struct {
	root Element // sentinel list element, only &root, root.prev, and root.next are used
	len  int     // current list length excluding (this) sentinel element
}

它是一个特殊循环双向链表. 特殊在 Element::list 指向头节点.

随着我们对 list 内存布局理解后, 后面的业务代码实现起来就很一般了. 例如这里

// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushBackList(other *List) {
	l.lazyInit()
	for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
		l.insertValue(e.Value, l.root.prev)
	}
}

其实可以实现的更贴合 list 库总体的风格, 性能还更好

// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushBackList(other *List) {
	l.lazyInit()
	for e := other.Front(); e != nil; e = e.Next() {
		l.insertValue(e.Value, l.root.prev)
	}
}

是不是发现上层代码理解起来心智负担不大. 不过 go 中 slice list map 都不是线程安全的.

特殊场景需要自行加锁. 这里不过多扯. 以后有机会会详细分析 Go 中锁源码实现. 最后通过

上面 list 包真实现一个 LRU Cache

package cache

import (
	"container/list"
	"sync"
)

// entry 存储实体内容
type entry struct {
	key   interface{}
	value interface{}
}

// Cache LRU 缓存实现
type Cache struct {
	// x 保证 LRU 访问安全
	m sync.Mutex

	// max 表示缓存容量的最大值, 0 表示无限缓存
	max uint

	// list 循环双向链表
	list *list.List

	// pond 缓存的池子
	pond map[interface{}]*list.Element
}

// New 新建一个 LRU 缓存对象
func New(max uint) *Cache {
	return &Cache{
		max:  max,
		list: list.New(),
		pond: make(map[interface{}]*list.Element),
	}
}

// remove 通过 *list.Element 删除
func (c *Cache) remove(e *list.Element) {
	n, ok := c.list.Remove(e).(*entry)
	if ok {
		delete(c.pond, n.key)
	}
}

// Set 添加缓存
func (c *Cache) Set(key, value interface{}) {
	c.m.Lock()
	defer c.m.Unlock()

	if e, ok := c.pond[key]; ok {
		if value == nil {
			// Set key nil <=> Remove key
			c.remove(e)
		} else {
			e.Value = value
			c.list.MoveToFront(e)
		}
		return
	}

	// 如果是首次添加
	c.pond[key] = c.list.PushFront(&entry{key, value})

	// 如果超出池子缓存开始清理
	if c.max != 0 && uint(c.list.Len()) > c.max {
		c.remove(c.list.Back())
	}
}

// Get 获取缓存
func (c *Cache) Get(key interface{}) (interface{}, bool) {
	c.m.Lock()
	defer c.m.Unlock()

	if e, ok := c.pond[key]; ok {
		c.list.MoveToFront(e)
		return e.Value.(*entry).value, true
	}
	return nil, false
}

用起来很容易

	c := cache.New(1)
	c.Set("123", "123")
	c.Set("234", "234")
	fmt.Println(c.Get("123"))
	fmt.Println(c.Get("234"))

是不是离开了 C, 整个世界也很简单. 没啥设计模式, 有的是性能还可以, 也能用.

希望能帮到有心人 ~

后记 - 那个打开的大门

你曾是少年 - https://music.163.com/#/song?id=426027293

每个男人心里都有一块净土, 只不过生活所逼硬生生的, 藏在心底最深处 . ... ..

原文地址:https://www.cnblogs.com/life2refuel/p/10067628.html

时间: 2024-12-20 02:08:25

C 数据结构堆的相关文章

基本数据结构——堆(Heap)的基本概念及其操作

基本数据结构――堆的基本概念及其操作 小广告:福建安溪一中在线评测系统 Online Judge 在我刚听到堆这个名词的时候,我认为它是一堆东西的集合... 但其实吧它是利用完全二叉树的结构来维护一组数据,然后进行相关操作,一般的操作进行一次的时间复杂度在 O(1)~O(logn)之间. 可谓是相当的引领时尚潮流啊(我不信学信息学的你看到log和1的时间复杂度不会激动一下下)!. 什么是完全二叉树呢?别急着去百度啊,要百度我帮你百度: 若设二叉树的深度为h,除第 h 层外,其它各层 (1-h-1

数据结构--堆的实现之深入分析

一,介绍 以前在学习堆时,写了两篇文章:数据结构--堆的实现(上)   和   数据结构--堆的实现(下),  感觉对堆的认识还是不够.本文主要分析数据结构 堆(讨论小顶堆)的基本操作的一些细节,比如 insert(插入)操作 和 deleteMin(删除堆顶元素)操作的实现细节.分析建堆的时间复杂度.堆的优缺点及二叉堆的不足. 二,堆的实现分析 堆的物理存储结构是一维数组,逻辑存储结构是完全二叉树.堆的基本操作有:insert--向堆中插入一个元素:deleteMin--删除堆顶元素 故堆的类

【C/C++学院】0828-STL入门与简介/STL容器概念/容器迭代器仿函数算法STL概念例子/栈队列双端队列优先队列/数据结构堆的概念/红黑树容器

STL入门与简介 #include<iostream> #include <vector>//容器 #include<array>//数组 #include <algorithm>//算法 using namespace std; //实现一个类模板,专门实现打印的功能 template<class T> //类模板实现了方法 class myvectorprint { public: void operator ()(const T &

数据结构--堆的实现(下)

1,堆作为优先级队列的应用 对于普通队列而言,具有的性质为FIFO,只要实现在队头删除元素,在队尾插入元素即可.因此,这种队列的优先级可视为按 时间到达 的顺序来衡量优先级的.到达得越早,优先级越高,就优先出队列被调度. 更一般地,很多应用不能单纯地按时间的先后来分优先级,比如按CPU占用时间或者其它方式……在这种情形下,使用堆更容易表达优先级队列. 2,堆的两个性质:①结构性质--堆从结构上看是一颗完全二叉树.然而,从物理存储上看,堆的实现基本上是使用一个一维数组存储堆中所有的结点.②orde

数据结构-堆

堆(英语:Heap),是一种拥有像树那样的特殊数据结构,或者理解为具有优先级的树.它的特点是父节点的值大于(或小于)两个子节点的值(分别称为大顶堆和小顶堆).它常用于管理算法执行过程中的信息,应用场景包括堆排序,优先队列等.堆通常是一个可以被看做一棵树的数组(或ArrayList)对象.常见的堆有二叉堆.二项堆.斐波那契堆等. 二叉堆(Binary heap) 二叉堆是一种特殊的堆,实为二叉树的一种:是完全二叉树或者是近似完全二叉树.二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子

浅谈数据结构-堆

在数据结构的世界中有一个叫堆的玩意,这玩意有什么用呢?无用,都去pq了 堆,其实就是一棵完全二叉树. “若设二叉树的深度为h,除第 h 层外,其它各层 (1-h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树”  by 谋财害命公司 百度 ↑清真的 完全二叉树 ↓ 啊那么为什么会闲的无聊出现这种奇怪的数据结构呢? 因为我们的某些算法可能需要堆来进行优化,如dj,prim. 堆可以在O(1)的时间取出最优值,但是需要O(logn)的时间修改和O(nlogn)

数据结构—堆

堆是二叉树中的一种,是一种常见的数据结构,具有以下性质: 任意节点小于(最小堆)或大于(最大堆)它的所有后裔,最小元或最大元在堆的根上(堆序性). 堆总是一棵完全二叉树 最大堆如图一,最小堆如图二. 最小堆的实现如下: MinHeap.h 1 #include "stdafx.h" 2 #include <iostream> 3 using namespace std; 4 template <typename Type> 5 class MinHeap{ 6

数据结构-----堆的基本操作和应用

(一)用仿函数实现大堆小堆 堆数据结构是一种数组对象,它可以被视为一棵完全二叉树结构. 堆结构的二叉树存储是 最大堆:每个父节点的都大于孩子节点. 最小堆:每个父节点的都小于孩子节点. 仿函数(functor),就是使一个类的使用看上去象一个函数.其实现就是类中实现一个operator(),这个类就有了类似函数的行为,就是一个仿函数类了.在实现大,小堆的过程中,有些功能的的代码,会在不同的成员函数中用到,想复用这些代码,有两种途径. 1)公共的函数,这是一个解决方法,不过函数用到的一些变量,就可

数据结构——堆(Heap)大根堆、小根堆

Heap是一种数据结构具有以下的特点: 1)完全二叉树: 2)heap中存储的值是偏序: Min-heap: 父节点的值小于或等于子节点的值: Max-heap: 父节点的值大于或等于子节点的值: 堆的存储: 一般都用数组来表示堆,i结点的父结点下标就为(i–1)/2.它的左右子结点下标分别为2 * i + 1和2 * i + 2.如第0个结点左右子结点下标分别为1和2. 堆的操作:insert 插入一个元素:新元素被加入到heap的末尾,然后更新树以恢复堆的次序. 每次插入都是将新数据放在数组