Pandas里面常用的一些数据分析函数总结

import pandas as pd
import numpy as np

pandas 有两个主要的数据结构:Series 和 DataFrame;
Series 是一个一维数组对象 ,它包含一组索引和一组数据,可以把它理解为一组带索引的数组。
DataFrame 是一个表格型的数据结构。它提供有序的列和不同类型的列值。

df:Pandas DataFrame对象
s: Pandas Series对象

数据导入:

  pd.read_csv(filename):从csv文件中导入数据;
  pd.read_table(filename):从限定分隔符的文本文件导入数据;
  pd.read_excel(filename):从Excel文件导入数据;
  pd.read_sql(query,connection_object):从SQL表/库中导入数据;
  pd.read_json(json_string):从JSON格式的字符串导入数据;
  pd.read_html(url):解析URLL,字符串或者HTML文件;
  pd.read_clipboard():从粘贴板获取内容;
  pd.DataFrame(dict):从字典对象导入数据;

数据导出:

  df.to_csv(filename):导出数据到CSV文件;
  df.excel(filename):导出数据到EXCEl文件;
  df.to_sql(table_nname,connection_object):导出数据到SQL表;
  df.json(filename):以json格式导出数据到文本文件;

创建对象:

  pd.DataFrame(np.random.rand(20,5)):创建20行5列的随即数组成的DataFrame对象;
  pd.Series(my_list):从可迭代对象my_list创建一个Series对象;
  df.index = pd.date_range(‘1900/1/30‘,periods=df.shape[0]):增加一个日期索引;

  index和reindex联合使用很有用处,index可作为索引并且元素乱排序之后,所以跟着元素保持不变,因此,当重排元素时,只需要对index进行才重排即可:reindex。

数据查看:

  df.info():查看索引、数据类型和内存信息;
  df.tail():查看DataFrame对象的最后n行;
  df.shape():查看行数和列数;
  df.head():查看DataFrame对象的前n行;
  df.describe():查看数值型列的汇总统计;
  s.value_counts(dropna=False):查看Series对象的唯一值和计数;
  df.apply(pd.Seices.value_counts):查看DataFrame对象中每一列的唯一值和计数;

数据选取:

  df[col]:根据列名,并以Series的形式返回列;
  df[[col1, col2]]:以DataFrame形式返回多列;
  s.iloc[0]:按位置选取数据;
  s.loc[‘index_one‘]:按索引选取数据;
  df.iloc[0,:]:返回第一行;

数据清洗:

  df.columns = [‘a‘,‘b‘,‘c‘]:重命名列名

  pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组;

  pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
  df.dropna():删除所有包含空值的行;

  df.fillna(x):用x替换DataFrame对象中所有的空值;

  s.astype(float):将Series中的数据类型更改为float类型;

  s.replace(1,‘one‘):用‘one’代替所有等于1的值
  df.rename(columns=lambda x: x + 1):批量更改列名;

  df.set_index(‘column_one‘):更改索引列;

数据处理:

  df[df[col] > 0.5]:选择col列的值大于0.5的行;
  df.sort_values(col1):按照列col1排序数据,默认升序排列;
  df.groupby(col):返回一个按列col进行分组的Groupby对象;

  df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值;

  df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表;

  data.apply(np.mean):对DataFrame中的每一列应用函数np.mean

数据合并:

  df1.append(df2):将df2中的行添加到df1的尾部
  df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
  df1.join(df2,on=col1,how=‘inner‘):对df1的列和df2的列执行SQL形式的join

数据统计:

  df.describe():查看数据值列的汇总统计;

  df.mean():返回所有列的均值

  df.corr():返回列与列之间的相关系数;

  df.count():返回每一列中的非空值的个数;

  df.max():返回每一列的最大值

  df.min():返回每一列的最小值;

  df.median():返回每一列的中位数;

  df.std():返回每一列的标准

Pandas支持的数据类型:

  int 整型
  float 浮点型
  bool 布尔类型
  object 字符串类型
  category 种类
  datetime 时间类型

其他:

  df.astypes: 数据格式转换
  df.value_counts:相同数值的个数统计
  df.hist(): 画直方图
  df.get_dummies: one-hot编码,将类型格式的属性转换成矩阵型的属性。比如:三种颜色RGB,红色编码为[1 0 0];

后面会继续更新

原文地址:https://www.cnblogs.com/songorz/p/10034176.html

时间: 2024-10-02 20:48:37

Pandas里面常用的一些数据分析函数总结的相关文章

pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)

pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 describe 针对Series或DataFrame列计算统计 min/max/sum 计算最小值 最大值 总和 argmin argmax 计算能够获取到最小值和最大值的索引位置(整数) idxmin idxmax 计算能够获取到最小值和最大值的索引值 quantile 计算样本的分位数(0到1)

C#-正则,常用几种数据解析-端午快乐

在等待几个小时就是端午节了,这里预祝各位节日快乐. 这里分享的是几个在C#中常用的正则解析数据写法,其实就是Regex类,至于正则的匹配格式,请仔细阅读正则的api文档,此处不具体说明,谢谢. 开始吧: 1.查询是否存在“订单号”数据的字符串 1 //匹配对象 2 var expl = "[{\"订单号\":2006,\"价格\":888.90,\"下单时间\":\"2016-06-08 17:01\",\"

iOS 常用四种数据存储方式

iOS 常用四种数据存储方式 在iOS开发过程中,不管是做什么应用,都会碰到数据保存的问题.将数据保存到本地,能够让程序的运行更加流畅, ,使得用户体验更好.下面介绍?一下数据保存的方式: 1.NSKeyedArchiver:采用归档的形式来保存数据,该数据对象需要遵守NSCoding协议,并且该对象对应的类必须提供encodeWithCoder:和initWithCoder:方法.前?一个方法告诉系统怎么对对象进行编码,而后?一个方法则是告诉系统怎么对对象进行解码.例如对Possession对

可伸缩性架构常用技术——之数据切分

可伸缩性架构常用技术 ——之数据切分(Data Sharding/Partition) 1 简介 本来想写一篇可伸缩性架构方面的文章,发现东西太多了,久久未能下笔,这里首先把大家最关注的数据切分(Partition/Sharding)方面的内容先写完,给大家参考. 我们知道,为了应对不断增长的数据,我们对数据进行切分,存储在不同的数据库里,本文提到的数据库在非特定指明的情况下,均指一个逻辑数据库(是一组数据库,比如Master-Slave),而非单一各个物理数据库. 其主要有两种方式: 垂直切分

大数据开发常用的大数据分析软件有什么?

大数据开发常用的大数据分析软件有什么? 大数据研究的出现,为企业.研究机构.政府决策提供了新的行之有效思路和手段,想要做好大数据的管理和分析,一些大数据开发工具的使用是必不可少的,以下是大数据开发过程中常用的工具: 1. Apache Hive Hive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等. Hive提供了一种简单的类似SQL的查询语言-HiveQL,这为熟悉SQL语言的用户

常用的大数据技术有哪些?

大数据技术为决策提供依据,在政府.企业.科研项目等决策中扮演着重要的角色,在社会治理和企业管理中起到了不容忽视的作用,很多国家,如中国.美国以及欧盟等都已将大数据列入国家发展战略,微软.谷歌.百度以及亚马逊等大型企业也将大数据技术列为未来发展的关键筹码,可见,大数据技术在当今乃至未来的重要性! 大数据学习QQ群:716581014 大数据技术,简而言之,就是提取大数据价值的技术,是根据特定目标,经过数据收集与存储.数据筛选.算法分析与预测.数据分析结果展示等,为做出正确决策提供依据,其数据级别通

Pandas 10分钟入门----缺失数据的处理(官方文档注释版三)

在日常我们获取的数据中,经常会出现数据缺失的情况.对数据缺失的处理,有多种处理的方法:插值填补.平均值填补方法很多.这里不具体讨论用哪种方式去插补这些数据,而只是谈谈如何使用pandas去快速的处理这些数据. pandas 常用np.nan代表缺失数据,详情可以查看Missing Data section. 1. reindex()可以允许你在指定维度上修改.增加.删除索引,并返回数据的副本: df1 = df.reindex(index=dates[0:4], columns=list(df.

总结(5)--- Numpy和Pandas库常用函数

二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成C.C++.Fortran等语言编写的代码的工具. 首先要导入numpy库:import numpy as np A NumPy函数和属性: 类型 类型代码 说明 i

四种常用的post数据提交方式

application/x-www-form-urlencoded 这是默认的post传输方式,用url转码的方法,让数据以key1=val1&key2=val2的方式传输.此方式的数据形式与get方式一样. multipart/form-data 这个也是常见的方式,最常用于传输图片和其他文件.下面是一段数据事例: POST http://www.example.com HTTP/1.1 Content-Type:multipart/form-data; boundary=----WebKit