Python @property 详解

本文讲解了 Python 的 property 特性,即一种符合 Python 哲学地设置 getter 和 setter 的方式。

Python 有一个概念叫做 property,它能让你在 Python 的面向对象编程中轻松不少。在了解它之前,我们先看一下为什么 property 会被提出。

一个简单的例子

比如说你要创建一个温度的类Celsius,它能存储摄氏度,也能转换为华氏度。即:

class Celsius:
    def __init__(self, temperature = 0):
        self.temperature = temperature

    def to_fahrenheit(self):
        return (self.temperature * 1.8) + 32

我们可以使用这个类:

>>> # 创建对象 man
>>> man = Celsius()

>>> # 设置温度
>>> man.temperature = 37

>>> # 获取温度
>>> man.temperature
37

>>> # 获取华氏度
>>> man.to_fahrenheit()
98.60000000000001

最后额外的小数部分是浮点误差,属于正常现象,你可以在 Python 里试一下 1.1 + 2.2

在 Python 里,当我们对一个对象的属性进行赋值或估值时(如上面的temperature),Python 实际上是在这个对象的 __dict__字典里搜索这个属性来操作。

>>> man.__dict__
{‘temperature‘: 37}

因此,man.temperature实际上被转换成了man.__dict__[‘temperature‘]

假设我们这个类被程序员广泛的应用了,他们在数以千计的客户端代码里使用了我们的类,你很高兴。

突然有一天,有个人跑过来说,温度不可能低于零下273度,这个类应该加上对温度的限制。这个建议当然应该被采纳。作为一名经验丰富的程序员,你立刻想到应该使用 setter 和 getter 来限制温度,于是你将代码改成下面这样:

class Celsius:
    def __init__(self, temperature = 0):
        self.set_temperature(temperature)

    def to_fahrenheit(self):
        return (self.get_temperature() * 1.8) + 32

    # 更新部分
    def get_temperature(self):
        return self._temperature

    def set_temperature(self, value):
        if value < -273:
            raise ValueError("Temperature below -273 is not possible")
        self._temperature = value

很自然地,你使用了“私有变量”_temperature来存储温度,使用get_temperature()set_temperature()提供了访问_temperature的接口,在这个过程中对温度值进行条件判断,防止它超过限制。这都很好。

问题是,这样一来,使用你的类的程序员们需要把他们的代码中无数个obj.temperature = val改为obj.set_temperature(val),把obj.temperature改为obj.get_temperature()。这种重构实在令人头痛。

所以,这种方法不是“向下兼容”的,我们要另辟蹊径。

@property 的威力!

想要使用 Python 哲学来解决这个问题,就使用 property。直接看代码:

class Celsius:
    def __init__(self, temperature = 0):
        self.temperature = temperature

    def to_fahrenheit(self):
        return (self.temperature * 1.8) + 32

    def get_temperature(self):
        print("Getting value")
        return self._temperature

    def set_temperature(self, value):
        if value < -273:
            raise ValueError("Temperature below -273 is not possible")
        print("Setting value")
        self._temperature = value

    # 重点在这里
    temperature = property(get_temperature,set_temperature)

我们在class Celsius的最后一行使用了一个 Python 内置函数(类) property()。它接受两个函数作为参数,一个 getter,一个 setter,并且返回一个 property 对象(这里是temperature)。

这样以后,任何访问temperature的代码都会自动转而运行get_temperature(),任何对temperature赋值的代码都会自动转而运行set_temperature()我们在代码里加了print()便于测试它们的运行状态。

>>> c = Celsius()  # 此时会运行 setter,因为 __init__ 里对 temperature 进行了赋值
Setting value

>>> c.temperature  # 此时会运行 getter,因为对 temperature 进行了访问
Getting value
0

需要注意的是,实际的温度存储在_temperature里,temperature只是提供一个访问的接口。

深入了解 Property

正如之前提到的,property()是 Python 的一个内置函数,同时它也是一个类。函数签名为:

property(fget=None, fset=None, fdel=None, doc=None)

其中,fget是一个 getter 函数,fset是一个 setter 函数,fdel是删除该属性的函数,doc是一个字符串,用作注释。函数返回一个 property 对象。

一个 property 对象有 getter()setter()deleter()三个方法用来指定相应绑定的函数。之前的

temperature = property(get_temperature,set_temperature)

实际上等价于

# 创建一个空的 property 对象
temperature = property()
# 绑定 getter
temperature = temperature.getter(get_temperature)
# 绑定 setter
temperature = temperature.setter(set_temperature)

这两个代码块等价。

熟悉 Python 装饰器的程序员肯定已经想到,上面的 property 可以用装饰器来实现。

通过装饰器@property,我们可以不定义没有必要的 get_temperature()set_temperature(),这样还避免了污染命名空间。使用方式如下:

class Celsius:
    def __init__(self, temperature = 0):
        self._temperature = temperature

    def to_fahrenheit(self):
        return (self.temperature * 1.8) + 32

    # Getter 装饰器
    @property
    def temperature(self):
        print("Getting value")
        return self._temperature

    # Setter 装饰器
    @temperature.setter
    def temperature(self, value):
        if value < -273:
            raise ValueError("Temperature below -273 is not possible")
        print("Setting value")
        self._temperature = value

你可以使用装饰器,也可以使用之前的方法,完全看个人喜好。但使用装饰器应该是更加 Pythonic 的方法吧。

参考

Python @property

(本文完)

原文地址:https://www.cnblogs.com/gscnblog/p/10366604.html

时间: 2024-11-01 15:44:45

Python @property 详解的相关文章

python正则表达式详解

python正则表达式详解 正则表达式是一个很强大的字符串处理工具,几乎任何关于字符串的操作都可以使用正则表达式来完成,作为一个爬虫工作者,每天和字符串打交道,正则表达式更是不可或缺的技能,正则表达式的在不同的语言中使用方式可能不一样,不过只要学会了任意一门语言的正则表达式用法,其他语言中大部分也只是换了个函数的名称而已,本质都是一样的.下面,我来介绍一下python中的正则表达式是怎么使用的. 首先,python中的正则表达式大致分为以下几部分: 元字符 模式 函数 re 内置对象用法 分组用

python线程详解

#线程状态 #线程同步(锁)#多线程的优势在于可以同时运行多个任务,至少感觉起来是这样,但是当线程需要共享数据时,可能存在数据不同步的问题. #threading模块#常用方法:'''threading.currentThread():返回当前的线程变量threading.enumerate():返回一个包含正在运行的线程的list,正在运行指:线程启动后,结束前,不包含启动前和终止后的线程threading.activeCount():返回正在运行的线程数量,与len(threading.en

python difflib详解

difflib -帮助进行差异化比较 这个模块提供的类和方法用来进行差异化比较,它能够生成文本或者html格式的差异化比较结果,如果需要比较目录的不同,可以使用filecmp模块. class difflib.SequenceMatcher 这是可以用来比较任何类型片段的类,只要比较的片段是可hash的,都可以用来比较,使用非常灵活.他源于1980,s的“完形匹配算法”,并且进行了一系列的优化和改进. 通过对算法的复杂度比较,它由于原始的完形匹配算法,在最坏情况下有n的平方次运算,在最好情况下,

转 python数据类型详解

python数据类型详解 目录 1.字符串 2.布尔类型 3.整数 4.浮点数 5.数字 6.列表 7.元组 8.字典 9.日期 1.字符串 1.1.如何在Python中使用字符串 a.使用单引号(') 用单引号括起来表示字符串,例如: str='this is string'; print str; b.使用双引号(") 双引号中的字符串与单引号中的字符串用法完全相同,例如: str="this is string"; print str; c.使用三引号(''') 利用三

Python列表详解

Python列表详解: 创建一个列表,只要把逗号分隔的不同数据项使用方括号括起来即可. 比如:    list = [1, 2, 3, 4, 5 ]; 与字符串的索引一样,列表索引从0开始. Python列表函数即方法: Python所包含的函数: 1.cmp() 描述: cmp()用于比较两个列表的元素. 语法: cmp (list1,list2) 返回值: 如果比较的元素是同类型的,则比较其值,返回结果. 如果两个元素不是同一种类型,则检查它们是否是数字. 如果是数字,执行必要的数字强制类型

Python 递归函数 详解

Python 递归函数 详解   在函数内调用当前函数本身的函数就是递归函数   下面是一个递归函数的实例: 第一次接触递归函数的人,都会被它调用本身而搞得晕头转向,而且看上面的函数调用,得到的结果会是: 为什么会得出上面的结果呢?因为都把调用函数本身之后的代码给忘记了,就是else之后的python 代码. 实际此递归函数输出的是以下结果: 相信大家看到这里都有点蒙,小编也一样,我第一次看到这个递归函数时,只能理解到第一个结果.那是因为,大部分人在做事情的时候,中断第一件事,被安排去做第二件事

Python数据类型详解——列表

Python数据类型详解--列表 在"Python之基本数据类型概览"一节中,大概介绍了列表的基本用法,本节我们详细学一下列表. 如何定义列表:在[]内以英文里输入法的逗号,,按照索引,存放各种数据类型,每个位置代表一个元素. 回顾一下列表的特点: 1.可存放多个值. 2.按照从左到右的顺序定义列表元素,下标从0开始顺序访问,是有序的. 3.可修改指定索引位置对应的值,可变. 一.列表元素的增加操作 1.追加 用append方法将数据追加到列表的尾部 names = ['Kwan',

python面向对象详解(上)

创建类 Python 类使用 class 关键字来创建.简单的类的声明可以是关键字后紧跟类名: class ClassName(bases): 'class documentation string' #'类文档字符串' class_suite #类体 实例化 通过类名后跟一对圆括号实例化一个类 mc = MyClass() # instantiate class 初始化类 'int()'构造器 def __int__(self): pass 注意:self类似Java的this关键字作用,它代

python字典详解

字典是Python中唯一的內建的映射类型,可以存储任意对象的容器,比如:字符串,列表,元组,自定义对象等:字典由键(key)与值(value)组成,基本语法如下: {key:value, ... ...}字典中每个Key是唯一的,key必须是可哈希(后面我们介绍): 这节我们来看下字典基本知识点: 1>字典定义.遍历.修改:2>理解字典key:4>字典相关函数: 1.字典定义与访问 1.1 直接定义字典: stocks = {'000001':'平安银行', '000002':'万科A'