TI 多模雷达1843毫米波雷达做自动泊车(用了8个雷达)

http://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2019/01/09/how-mmwave-sensors-enable-autonomous-parking

77-GHz single-chip mmWave sensors enable autonomous parking

FacebookTwitterLinkedInEmailMore12

Have you ever spent time looking for a parking spot at a shopping mall or a grocery store and wished that your car could drop you off at the entrance and go park itself, especially during harsh weather conditions like when it’s raining, or on an extremely hot day? How much time would you save if you didn’t have to drive around looking for a parking spot? (Or, how much money would you save by not paying for valet service?). Well, self-parking cars could be a reality soon, as carmakers adopt millimeter-wave (mmWave) radar sensors for automated parking applications.

You might wonder: don’t surround-view cameras and ultrasonic sensors already provide the ability to park cars? Today’s sensors enable parking assistance; in other words, the driver still has to make a judgment based on sensor feedback. Therefore, the cars are not completely autonomous.

Autonomous parking needs to first identify the empty parking spot or “free space” at distances of approximately 40 m. This is its “search mode.” Once it has identified an open space, the car needs to maneuver into it and park itself, called “park mode.”

To enable automated parking functionality, the sensor should be capable of detecting objects such as other cars, curbs, and pedestrians, from 3 cm to more than 40 m in a wide field of view, in any kind of environmental conditions. mmWave sensors help to achieve this functionality by accurately detecting smaller objects that may go undetected by other sensing modalities (such as a metal rod protruding from the ground) from a distance of less than 25 cm. mmWave sensors also continue to function under a variety of weather and lighting conditions.

Sensor installation

Installing sensors in a car is a major challenge today. Because mmWave sensors can be easily installed behind bumpers, there is no need to create holes in the body or chassis of the car. This is because millimeter waves pass through solid materials like plastic and bumpers, irrespective of car manufacturer or car model, standardizing their installation. The number of sensors needed to achieve a 360-degree sensing capability around the car is also much less compared to other sensing modalities. Eight sensors are positioned around the car to enable 360-degree sensing, as shown in Figure 1.

Figure 1: mmWave sensors provide 360-degree sensing capabilities around the car to enable automated parking applications

Multi-modal sensors

Automated parking is enabled by repurposing the existing front and rear corner radars, which are multimodal. When the car is in drive mode, these sensors can be used as blind-spot-detection sensors or lane-change-assistance sensors, where detection can happen at a distance of 80 m in order to detect cars in other lanes. When the car is in the search or park mode, the sensor’s configuration changes dynamically so that it can sense objects at shorter distances, from 40 m to less than 10 cm – a sufficient range for parking applications. Multi-modal obstacle-detection sensors on doors can also be repurposed for parking applications. For these reasons, mmWave sensors are becoming attractive to Tier-1 car manufacturers. Table 1 lists the benefits of using mmWave sensors for automated parking applications.


Feature


Benefit


Long detection range


Sense pedestrians and other objects at distances greater than 40 m


Wide field of view


Sense objects in 3D space around the car


Repurposing of the corner radar sensors


Reduce the number of sensors needed at the system level


Multimodal capability


Sense objects at 40 m or 5 m dynamically

Table 1: System-level benefits of using mmWave sensors for automated parking applications

Texas Instruments’ AWR1843 is a 77-GHz single-chip mmWave sensor with integrated digital signal processing, memory and radar acceleration unit to enable autonomous parking applications, as shown in Figure 2.

Figure 2: Components of the AWR1843 parking chip.

Table 2 conveys the application benefits of the AWR1843.


Feature


Benefit


Three-transmit antenna


Detect objects in azimuth and elevation planes


DSP and on-chip memory


Process complex algorithms on the chip efficiently


Radar accelerator unit


Perform fast Fourier transform operations in hardware to hasten the process


5-degree phase rotator per transmit antenna


Perform beam forming, which enhances object detection

Table 2: AWR1843 device features and application benefits

Carmakers and Tier-1 original equipment manufacturers are increasingly adopting mmWave sensors for various driver-assistance and automated parking functions. It is primarily because of the features and benefits that mmWave offers – including a higher degree of integration leading to a reduced form factor – that can enhance autonomous driving.

原文地址:https://www.cnblogs.com/focus-z/p/10450173.html

时间: 2024-11-09 13:23:34

TI 多模雷达1843毫米波雷达做自动泊车(用了8个雷达)的相关文章

UWP Jenkins + NuGet + MSBuild 手把手教你做自动UWP Build 和 App store包

背景 项目上需要做UWP的自动安装包,在以前的公司接触的是TFS来做自动build. 公司要求用Jenkins来做,别笑话我,之前还真不晓得这个东西. 会的同学请看一下支持错误,不会的同学请先自行脑补,我们一步一步的来. 首先我们准备2个安装包,Jenkins,NuGet 都下载最新的好了. 1. 安装Jenkins,下一步下一步.安装好了会自动浏览器跳转到http://localhost:8080/ 如下图 按照提示去C:\Program Files (x86)\Jenkins\secrets

新一代福克斯向智能化靠拢,自动泊车与出库有多便捷?

提起福克斯,想必众多消费者都有所共鸣,这可是一款在国内有着超过260万用户的"神车",而随着时代的变迁福克斯也完成了升级换代,搭载了福特最新科技的新一代福克斯已震撼登场. 这次新一代福克斯的到来,可谓诚意满满,新车外观内饰以及配置有了翻天覆地的变化与升级,但价格上两厢/三厢版本全系共12款车型售价为10.88-15.08万元,最顶配的ST-LINE版本相比上一代顶配还低了1.5万元,这一次新一代福克斯就连性价也是比极具出色. 在外观内饰上相信大家都已经是有目共睹,外观上新一代福克斯采用

APA自动泊车系统

1. 半自动泊车 自动泊车又称为自动泊车入位,它对于新手来说是一项相当便捷的配置,对于老手来说也省了些不少力气.那么自动泊车的原理是什么呢?能想怎么停就怎么停,想停哪儿就停哪儿吗?下面咱们就来说道说道. 有什么用? 该系统能自动帮驾驶者将车停入甚至驶出车位,无需自己打方向. 有什么优点? 自动泊车对于新手来说是一项相当便捷的配置,对于老手则是省了不少力气.此外,该系统还可避免因停车不注意发生的剐蹭. 即使有自动泊车系统提供帮助也不能代替驾驶员注意力,仍需要观察确认. 不是所有空隙都能自动停车入位

dubbo怎么做自动注入的?

通过spi扩展加载的时候,都是通过extensionloader来得到extension的,比如获得一个exchanger: public static Exchanger getExchanger(String type) { return ExtensionLoader.getExtensionLoader(Exchanger.class).getExtension(type);} 那么就是先拿到自己的extensionloader,然后利用这个loder去拿到extent-name对应的具

ThinkPHP做自动登陆及异位或加密COOKIE!

异位或加密方法: /* *登陆如果自动登陆加密 *默认是0解密状态,1是加密 *采用的方法是异位或加密 */ function encrytion($value,$type=0){ $key = md5(C('AUTO_LOGIN_KEY')); //加密 if($type){ // 64位加密 //return base64_encode($value ^ $key); // 加密后可能会有等号 return str_replace('=','',base64_encode($value ^

给aws ec2 所有ebs做自动快照

使用awscli来进行对ec2实例轮询,查询到每个ec2的ebs卷,并获取到每个ec2的tag,将标签的tag打给做的快照. awscli如何配置这里就不再说明.直接上干货 代码如下: #!/bin/bash #create ec2 ebs snapshot per week. PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin #init awscli #yum install -y python-pip #pip

利用web工具splinter模拟登陆做自动签到

首先,我需要的工具和组件有: Chrome浏览器 浏览器驱动ChromeDriver Python 3.5 Web应用测试工具Splinter 代码部分: from splinter import Browserimport time def login():    b = Browser(driver_name="chrome")    b.visit("签到连接地址")    b.fill("qq","用户名")    b

毫米波/激光/超声波雷达的区别

转自:http://www.sohu.com/a/201826967_524185 不知何时,自动驾驶技术从电影中跳出来,直接被拉到人们视野中.不过,去年特斯拉却因为几起自动驾驶事故,官网不得不把自动驾驶字眼改为辅助驾驶.本期<汽车总动员>讨论的不是自动驾驶,而是被称为自动驾驶汽车“眼睛”的雷达. 目前主流的“眼睛”有四类——毫米波雷达.激光雷达.超声波雷达.摄像头.他们各自都有自己的特点,比如摄像头的优点就很突出:精度高,距离远,直观方便:可是缺点也同样突出:受到天气的影响太大.倘若雾霾一来

毫米波雷达的主要应用分类

毫米波雷达顾名思义就是工作在毫米波波段(30-300 GHz)的雷达.目前毫米波的应用主要有以下几类: 1). 制导雷达.火控雷达,该类型雷达目前有一些选择在毫米波波段的主要原因是提高探测能力.减小雷达体积,降低重量和体积,便于集成.    2). 目标检测雷达,该类型雷达主要是通过机械/电子波束扫描,实现对观测区域目标距离.速度和角度的探测,配备相应的数据处理单元,可以实现对目标的识别(散射特性).跟踪和预测(kalman滤波.粒子滤波等). 3). 毫米波对地观测雷达,该类型雷达主要是毫米波