Python装饰器的另类用法

之前有比较系统介绍过Python的装饰器,本文算是一个补充。今天我们一起探讨一下装饰器的另类用法。

语法回顾

开始之前我们再将Python装饰器的语法回顾一下。

@decorate
def f(...):
    pass

等同于:

def f(...):
    pass

f = decorate(f)

@语法的好处在于:

  • 相同的函数名只出现一次,避免了f = decorate(f)这样的语句。
  • 可读性更高,让读代码的人一眼就明白函数被装饰了哪些功能。

@call()装饰器

假设你要创建一个整数平方的列表,你可以这样写:

>>> table = [0, 1, 4, 9, 16]
>>> len(table), table[3]
(5, 9)

也可以使用列表表达式,因为我们要实现比较简单。

>>> table = [i * i for i in range(5)]
>>> len(table), table[3]
(5, 9)

但是假如这个列表的逻辑比较复杂的时候,最好是写成一个方法,这样会更好维护。

>>> def table(n):
...     value = []
...     for i in range(n):
...         value.append(i*i)
...     return value
>>> table = table(5)

注意看最后一句,是不是很符合装饰器的语法规则?什么情况下你会写这样的代码呢?

  1. 你需要把相对复杂业务写成一个方法。
  2. 这个方法和返回值可以同名,而且你不希望对外公开此方法,只公开结果。
  3. 你想尽量使用装饰器。(无厘头的理由)

那么这时候@call()装饰器就登场了。

def call(*args, **kwargs):
    def call_fn(fn):
        return fn(*args, **kwargs)
    return call_fn

这个装饰器会把你传入的参数送给目标函数然后直接执行

@call(5)
def table(n):
    value = []
    for i in range(n):
        value.append(i*i)
    return value

print len(table), table[3]  # 5 9

@call()装饰器适用于任何函数,你传入的参数会被直接使用然后结果赋值给同名函数。这样避免了你重新定义一个变量来存储结果。

@list 装饰器

假如你有一个这样一个生成器函数。

def table(n):
    for i in range(n):
        yield i

当你要生成n=5的序列时,可以直接调用。

table = table(5)
print table  # <generator object table at 0x027DAC10>

使用上节提到的@call()装饰器,也能得到一样的结果。

@call(5)
def table(n):
    for i in range(n):
        yield i

print table  # <generator object table at 0x0340AC10>

你还可以直接将其转换成列表。(使用list(generator_object)函数)

@list
@call(5)
def table(n):
    for i in range(n):
        yield i

print table  # [0, 1, 2, 3, 4]

相信不少同学第一次看到这个用法应该是懵逼的。这等同于列表表达式,但是可读性也许差了不少。例子本身只是演示了装饰器的一种用法,但不是推荐你就这样使用装饰器。你这样用也许会被其他同事拖到墙角里打死。

类装饰器

在Python 2.6以前,还不支持类装饰器。也就是说,你不能使用这样的写法。

@decorator
class MyClass(object):
    pass

你必须这样写:

class MyClass(object):
    pass

MyClass = decorator(MyClass)

也就是说,@语法对类是做了特殊处理的,类不一定是一个callable对象(尽管它有构造函数),但是也允许使用装饰器。那么基于以上语法,你觉得类装饰器能实现什么功能呢?

举一个例子,ptest中的@TestClass()用于声明一个测试类,其源代码大致如此。

def TestClass(enabled=True, run_mode="singleline"):
    def tracer(cls):
        cls.__pd_type__ =‘test‘
        cls.__enabled__ = enabled
        cls.__run_mode__ = run_mode.lower()
        return cls
    return tracer

当我们在写一个测试类时,发生了什么?

@TestClass()
class TestCases(object):
    # your test case ...

print TestCases.__dict__  # {‘__module__‘: ‘__main__‘, ‘__enabled__‘: True, ‘__pd_type__‘: ‘test‘, ‘__run_mode__‘: ‘singleline‘, ...}

居然装饰器的参数全都变成了变成这个类的属性,好神奇!我们把语法糖一一展开。

class TestCases(object):
    pass

decorator = TestClass()
print decorator  # <function tracer at 0x033128F0>

TestCases = decorator(TestCases)
print TestCases  # <class ‘__main__.TestCases‘>

print TestCases.__dict__  # {‘__module__‘: ‘__main__‘, ‘__enabled__‘: True, ‘__pd_type__‘: ‘test‘, ‘__run_mode__‘: ‘singleline‘, ...}

当装饰器在被使用时,TestClass()函数会马上被执行并返回一个装饰器函数,这个函数是一个闭包函数,保存了enabledrun_mode两个变量。另外它还接受一个类作为参数,并使用之前保存的变量为这个类添加属性,最后返回。所以经过@TestClass()装饰过的类都会带上__enabled____pd_type__以及__run_mode__的属性。

由此可见,类装饰器可以完成和Java类似的注解功能,而且要比注解强大的多。

后记

装饰器就是一个语法糖,当你看不懂一个装饰器时,可以考虑将其依次展开,分别带入。这个语法糖给了我们不少方便,但是也要慎用。毕竟可维护的代码才是高质量的代码。

原文地址:https://www.cnblogs.com/feifeifeisir/p/10630021.html

时间: 2025-01-20 03:30:08

Python装饰器的另类用法的相关文章

5.初识python装饰器 高阶函数+闭包+函数嵌套=装饰器

一.什么是装饰器? 实际上装饰器就是个函数,这个函数可以为其他函数提供附加的功能. 装饰器在给其他函数添加功能时,不会修改原函数的源代码,不会修改原函数的调用方式. 高阶函数+函数嵌套+闭包 = 装饰器 1.1什么是高阶函数? 1.1.1函数接收的参数,包涵一个函数名. 1.1.2 函数的返回值是一个函数名. 其实这两个条件都很好满足,下面就是一个高阶函数的例子. def test1(): print "hamasaki ayumi" def test2(func): return t

Python装饰器由浅入深

装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码.装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们以装饰函数为例子介绍其用法.要理解在Python中装饰器的原理,需要一步一步来.本文尽量描述得浅显易懂,从最基础的内容讲起. (注:以下使用Python3.5.1环境) 一.Python的函数相关基础 第一,必须强调的是python是从上往下顺序执行的,而且碰到函数的定义代码块是不会立即执行它的,只

深入浅出 Python 装饰器:16 步轻松搞定 Python 装饰器

Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

python装饰器方法

前几天向几位新同事介绍项目,被问起了@login_required的实现,我说这是django框架提供的装饰器方法,验证用户是否登录,只要这样用就行了,因为自己不熟,并没有做过多解释. 今天查看django官网,忽然发现,装饰器用法并不是django框架提供的,而是python的一种语法,真心汗一个,自以为python用的很熟了,看来是井底之蛙! 恰逢周末,静下心来了解一下python的装饰器方法. 谈到代码里的装饰器,很自然的想到了设计模式中的装饰器模式,为了防止再次张冠李戴,特意翻了翻设计模

Python——装饰器基础

装饰器基础 前面快速介绍了装饰器的语法,在这里,我们将深入装饰器内部工作机制,更详细更系统地介绍装饰器的内容,并学习自己编写新的装饰器的更多高级语法. ================================================================================= 什么是装饰器 装饰是为函数和类指定管理代码的一种方式.Python装饰器以两种形式呈现: [1]函数装饰器在函数定义的时候进行名称重绑定,提供一个逻辑层来管理函数和方法或随后对它们的调

理解Python装饰器(一)

python装饰器 装饰器是什么?我也不知道该如何给装饰器下定义. 1. 装饰器是函数,因为从代码的层面上来说,它就是开发人员定义的一个函数而已: 2. 装饰器就像是类的继承一样,通过装饰符,来实现函数与函数.函数与类之间的"继承" 3. 装饰器是种特殊的语法,通过 `@函数名` 或者 `@类名` 来实现函数或类的继承,但是 装饰器不是继承,装饰器装饰的函数会被当做参数传递给装饰器,这个功能又好像 C++中的虚函数,装饰器装饰的函数用来修改装饰器本身的功能来实现额外功能的添加. 示例:

Python装饰器详解,详细介绍它的应用场景

装饰器的应用场景 附加功能 数据的清理或添加: 函数参数类型验证 @require_ints 类似请求前拦截 数据格式转换 将函数返回字典改为 JSON/YAML 类似响应后篡改 为函数提供额外的数据 mock.patch 函数注册 在任务中心注册一个任务 注册一个带信号处理器的函数 不同应用场景下装饰器实现 函数注册表 简单注册表 funcs = [] def register(func): funcs.append(func) return func @register def a(): r

python装饰器通俗易懂的解释!

python装饰器 刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了.总结了一下解释得比较好的,通俗易懂的来说明一下: 小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣: 1 def sum1(): 2 sum = 1 + 2 3 print(sum) 4 sum1() 此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了: 1 import time 2 3 def

python装饰器1

第八步:让装饰器带 类 参数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 # -*- coding:gbk -*- '''示例8: 装饰器带类参数''' class locker:     def __init__(self):         print("locker.__init__() should be not called.")