IIC协议理解(转)

目录

  • IIC协议理解(转)

    • 个人小结记录 (记一下这个就够了)
    • 以下为转载记录
    • 概述
      • 概述
      • 输出级
      • 主设备与从设备
      • 速率
    • 时序
      • 空闲状态
      • 起始位与停止位
      • 数据的有效性
      • 数据的传送
    • 工作过程
      • 主设备向从设备发送数据
      • 主控器读取数据的过程
    • 以C语言理解IIC


title: IIC协议理解(转)
date: 2019/1/28 17:50:13
toc: true
---

IIC协议理解(转)

原文地址 https://www.cnblogs.com/BitArt/archive/2013/05/28/3103917.html

周立功完整的pdf https://download.csdn.net/download/qq2012953313493/10941228

完整的数据手册参考 https://download.csdn.net/download/qq2012953313493/10941245

个人小结记录 (记一下这个就够了)

  1. SCL为0时,允许sda改变传输数据
  2. SCL为1时,sda=1->0, satrt
  3. SCL为1时,sda=0->1,stop
  4. 如果需要ack,请求者在第9个时钟释放sda,响应者拉低sda表示ack
  5. 读1个字节=S Addr Wr [A] Comm [A] S Addr Rd [A][Data] NA P
  6. 写一个字节=S Addr Wr [A] Comm [A] Data [A] P
S     (1 bit) : Start bit
P     (1 bit) : Stop bit
Rd/Wr (1 bit) : Read/Write bit. Rd equals 1, Wr equals 0.
A, NA (1 bit) : Accept and reverse accept bit.
Addr  (7 bits): I2C 7 bit address. Note that this can be expanded as usual to
                get a 10 bit I2C address.
Comm  (8 bits): Command byte, a data byte which often selects a register on
                the device.
Data  (8 bits): A plain data byte. Sometimes, I write DataLow, DataHigh
                for 16 bit data.
Count (8 bits): A data byte containing the length of a block operation.

以下为转载记录

概述

概述

I2C 是Inter-Integrated Circuit的缩写,发音为"eye-squared cee" or "eye-two-cee" , 它是一种两线接口。
I2C 只是用两条双向的线,一条 Serial Data Line (SDA) ,另一条Serial Clock (SCL)。
SCL:上升沿将数据输入到每个EEPROM器件中;下降沿驱动EEPROM器件输出数据。(边沿触发)
SDA:双向数据线,为OD门,与其它任意数量的OD与OC门成"线与"关系。

输出级

每一个I2C总线器件内部的SDA、SCL引脚电路结构都是一样的,引脚的输出驱动与输入缓冲连在一起。其中输出为漏极开路的场效应管,输入缓冲为一只高输入阻抗的同相器,这种电路具有两个特点:

1)由于SDA、SCL为漏极开路结构(OD),因此它们必须接有上拉电阻,阻值的大小常为 1k8, 4k7 and 10k ,但1k8 时性能最好;当总线空闲时,两根线均为高电平。连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SDA及SCL都是线"与"关系。

2)引脚在输出信号的同时还将引脚上的电平进行检测,检测是否与刚才输出一致,为"时钟同步"和"总线仲裁"提供了硬件基础。

主设备与从设备

系统中的所有外围器件都具有一个7位的"从器件专用地址码",其中高4位为器件类型,由生产厂家制定,低3位为器件引脚定义地址,由使用者定义。主控器件通过地址码建立多机通信的机制,因此I2C总线省去了外围器件的片选线,这样无论总线上挂接多少个器件,其系统仍然为简约的二线结构。终端挂载在总线上,有主端和从端之分,主端必须是带有CPU的逻辑模块,在同一总线上同一时刻使能有一个主端,可以有多个从端,从端的数量受地址空间和总线的最大电容 400pF的限制。

速率

普通模式:100kHz;
快速模式:400kHz;
高速模式:3.4MHz;

时序

空闲状态

I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高

起始位与停止位

  • 起始信号:当SCL为高期间,SDA由高到低的跳变;启动信号是一种电平跳变时序信号,而不是一个电平信号。
  • 停止信号:当SCL为高期间,SDA由低到高的跳变;停止信号也是一种电平跳变时序信号,而不是一个电平信号。

    ACK

    发送器每发送一个字节,就在时钟脉冲9期间释放数据线,由接收器反馈一个应答信号。 应答信号为低电平时,规定为有效应答位(ACK简称应答位),表示接收器已经成功地接收了该字节;应答信号为高电平时,规定为非应答位(NACK),一般表示接收器接收该字节没有成功。 对于反馈有效应答位ACK的要求是,接收器在第9个时钟脉冲之前的低电平期间将SDA线拉低,并且确保在该时钟的高电平期间为稳定的低电平。 如果接收器是主控器,则在它收到最后一个字节后,发送一个NACK信号,以通知被控发送器结束数据发送,并释放SDA线,以便主控接收器发送一个停止信号P。

    如下图逻辑分析仪的采样结果:释放总线后,如果没有应答信号,sda应该一直持续为高电平,但是如图中蓝色虚线部分所示,它被拉低为低电平,证明收到了应答信号。
    这里面给我们的两个信息是:1)接收器在SCL的上升沿到来之前的低电平期间拉低SDA;2)应答信号一直保持到SCL的下降沿结束;正如前文红色标识所指出的那样。

数据的有效性

I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。
我的理解:虽然只要求在高电平期间保持稳定,但是要有一个提前量,也就是数据在SCL的上升沿到来之前就需准备好,因为在前面I2C总线之(一)---概述一文中已经指出,数据是在SCL的上升沿打入到器件(EEPROM)中的。

数据的传送

在I2C总线上传送的每一位数据都有一个时钟脉冲相对应(或同步控制),即在SCL串行时钟的配合下,在SDA上逐位地串行传送每一位数据。数据位的传输是边沿触发。

工作过程

总线上的所有通信都是由主控器引发的。在一次通信中,主控器与被控器总是在扮演着两种不同的角色

主设备向从设备发送数据

主设备发送起始位,这会通知总线上的所有设备传输开始了,接下来主机发送设备地址,与这一地址匹配的slave将继续这一传输过程,而其它slave将会忽略接下来的传输并等待下一次传输的开始。主设备寻址到从设备后,发送它所要读取或写入的从设备的内部寄存器地址; 之后,发送数据。数据发送完毕后,发送停止位:
写入过程如下

  • 发送起始位
  • 发送从设备的地址和读/写选择位;释放总线,等到EEPROM拉低总线进行应答;如果EEPROM接收成功,则进行应答;若没有握手成功或者发送的数据错误时EEPROM不产生应答,此时要求重发或者终止。
  • 发送想要写入的内部寄存器地址;EEPROM对其发出应答;
  • 发送数据
  • 发送停止位.
  • EEPROM收到停止信号后,进入到一个内部的写入周期,大概需要10ms,此间任何操作都不会被EEPROM响应;(因此以这种方式的两次写入之间要插入一个延时,否则会导致失败,博主曾在这里小坑了一下)

    需要说明的是:①主控器通过发送地址码与对应的被控器建立了通信关系,而挂接在总线上的其它被控器虽然同时也收到了地址码,但因为与其自身的地址不相符合,因此提前退出与主控器的通信

主控器读取数据的过程

读的过程比较复杂,在从slave读出数据前,你必须先要告诉它哪个内部寄存器是你想要读取的,因此必须先对其进行写入(dummy write)

  • 发送起始位;
  • 发送slave地址+write bit set;
  • 发送内部寄存器地址;
  • 重新发送起始位,即restart;
  • 重新发送slave地址+read bit set;
  • 读取数据.主机接收器在接收到最后一个字节后,也不会发出ACK信号。于是,从机发送器释放SDA线,以允许主机发出P信号结束传输。
  • 发送停止位

以C语言理解IIC


完整代码如下

#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int
#define write_ADD 0xa0
#define read_ADD 0xa1
uchar a;
sbit SDA=P2^0;
sbit SCL=P2^1;
void SomeNop();     //短延时
void init();    //初始化
void check_ACK(void);
void I2CStart(void);
void I2cStop(void);
void write_byte(uchar dat);//写字节
void delay(uint z);
uchar read_byte();     //读字节
void write(uchar addr,uchar dat);  //指定地址写
uchar read(uchar addr);       //指定地址读
bit flag;  //应答标志位
void main()
{
    init();
    write_add(5,0xaa); //向地址5写入0xaa
    delay(10);      //延时,否则被坑呀!!!
     P1=read_add(5);      //读取地址5的值
     while(1);
}

//***************************************************************************
void delay()//简单延时函数
{ ;; }
//***************************************************************************
void start()  //开始信号 SCL在高电平期间,SDA一个下降沿则表示启动信号
{
    sda=1; //释放SDA总线
    delay();
    scl=1;
    delay();
    sda=0;
    delay();
}
//***************************************************************************
void stop()   //停止 SCL在高电平期间,SDA一个上升沿则表示停止信号
{
    sda=0;
    delay();
    scl=1;
    delay();
    sda=1;
    delay();
}
//***************************************************************************
void respons()  //应答 SCL在高电平期间,SDA被从设备拉为低电平表示应答
{
    uchar i;
    scl=1;
    delay();
    //至多等待250个CPU时钟周期
    while((sda==1)&&(i<250))i++;
    scl=0;
    delay();
}
//***************************************************************************
void init()//总线初始化 将总线都拉高一释放总线  发送启动信号前,要先初始化总线。即总有检测到总线空闲才开始发送启动信号
{
    sda=1;
    delay();
    scl=1;
    delay();
}
//***************************************************************************
void write_byte(uchar date) //写一个字节
{
    uchar i,temp;
    temp=date;  

    for(i=0;i<8;i++)
    {
        temp=temp<<1;
        scl=0;//拉低SCL,因为只有在时钟信号为低电平期间按数据线上的高低电平状态才允许变化;并在此时和上一个循环的scl=1一起形成一个上升沿
        delay();
        sda=CY;
        delay();
        scl=1;//拉高SCL,此时SDA上的数据稳定
        delay();
    }
    scl=0;//拉低SCL,为下次数据传输做好准备
    delay();
    sda=1;//释放SDA总线,接下来由从设备控制,比如从设备接收完数据后,在SCL为高时,拉低SDA作为应答信号
    delay();
}
//***************************************************************************
uchar read_byte()//读一个字节
{
    uchar i,k;
    scl=0;
    delay();
    sda=1;
    delay();
    for(i=0;i<8;i++)
    {
        scl=1;//上升沿时,IIC设备将数据放在sda线上,并在高电平期间数据已经稳定,可以接收啦
        delay();
        k=(k<<1)|sda;
        scl=0;//拉低SCL,使发送端可以把数据放在SDA上
        delay();
    }
    return k;
}
//***************************************************************************
void write_add(uchar address,uchar date)//任意地址写一个字节
{
    start();//启动
    write_byte(0xa0);//发送从设备地址
    respons();//等待从设备的响应
    write_byte(address);//发出芯片内地址
    respons();//等待从设备的响应
    write_byte(date);//发送数据
    respons();//等待从设备的响应
    stop();//停止
}
//***************************************************************************
uchar read_add(uchar address)//读取一个字节
{
    uchar date;
    start();//启动
    write_byte(0xa0);//发送发送从设备地址 写操作
    respons();//等待从设备的响应
    write_byte(address);//发送芯片内地址
    respons();//等待从设备的响应
    start();//启动
    write_byte(0xa1);//发送发送从设备地址 读操作
    respons();//等待从设备的响应
    date=read_byte();//获取数据
    stop();//停止
    return date;//返回数据
}

原文地址:https://www.cnblogs.com/zongzi10010/p/10331591.html

时间: 2024-10-31 18:33:40

IIC协议理解(转)的相关文章

IIC协议

参考文章:简单的I2C协议理解.http://blog.csdn.net/zmq5411/article/details/6085740 ? 文中以EEPROM为例,且以master角度阐述. 一. 技术性能: 工作速率有100K和400K两种: 支持多机通讯: 支持多主控模块,但同一时刻只允许有一个主控: 由数据线SDA和时钟SCL构成的串行总线: 每个电路和模块都有唯一的地址: 每个器件可以使用独立电源 ? 二. 基本工作原理: 以启动信号START来掌管总线,以停止信号STOP来释放总线:

TCP/IP协议理解

TCP/IP协议是Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议. 单从TCP/IP协议这个名称看,好多人误以为它是一个协议.其实TCP/IP并不是一个协议,而是一个协议族,这个族里面括很多协议,其中比较主要的是TCP协议和IP协议,所以简称为TCP/IP协议. TCP/IP协议由4层组成,从下到上分别是,网络接口层,网络层,传输层,应用层. 这里有的朋友可能会有疑问,开放系统互联参考模型(OSI)不是有

SNMP 和 NetBios协议理解

http://note.youdao.com/share/?id=0f3b39a6c3e0d5363076729662d164a3&type=note 一.简单网络管理协议(SNMP,Simple Network Management Protocol)构成了互联网工程工作小组(IETF,Internet Engineering Task Force)定义的Internet协议簇的一部分. 1.作用:想象一个由服务器,工作机,三层交换机等设备组成的网络.如果我想在工作机中,通过一种方式能够查询三

FPGA基础设计(四):IIC协议

很多数字传感器.数字控制的芯片(DDS.串行ADC.串行DAC)都是通过IIC总线来和控制器通信的.不过IIC协议仍然是一种慢速的通信方式,标准IIC速率为100kbit/s,快速模式速率为400kbit/s.本文致力于讲述如何用计数器控制和分频时钟控制两种方式完成IIC的读写操作. IIC协议 ??IIC协议是一种多机通讯,由SDA数据线和SCL时钟线构成串行总线,所有的IIC设备都可以挂载到总线上,但每个设备都有唯一的设备读地址和设备写地址.在使用IIC作为数字接口的芯片datasheet中

IIC协议解释(转)

IIC协议解释 推荐资源: http://m.elecfans.com/article/574049.html       and       https://blog.csdn.net/firefly_cjd/article/details/51921129  (动态图讲解) (1)概述 I2C(Inter-Integrated Circuit BUS) 集成电路总线,该总线由NXP(原PHILIPS)公司设计,多用于主控制器和从器件间的主从通信,在小数据量场合使用,传输距离短,任意时刻只能有

基于STM8的IIC协议--实例篇--时钟模块(DS3231)读取

1. 综述 由上篇博客可知道IIC协议如何用代码实现,本篇博客就不涉及协议内容,只讲解如何使用. 本次的实验传感为:DS3231(时钟模块),对于时钟模块的具体信息我也就不多介绍大家可以自行度娘,具体功能无非就是在单片机中起到一个获取时间的作用.然后该模块是可以由IIC协议去驱动的,再加上所要的操作也是比较简单,适合部分刚接触IIC协议而找不但传感练手的一个模块. 2. 明确任务顺序 个人习惯,在每驱动一个新传感的时候,我会将我要完成的传感分为几个任务点.接下来我就展示以下我在写DS3231模块

模拟IIC协议时序

IIC是飞利浦公司开发的两线式串行总线,主要应用在单片机和外围电子器件之间的数据通讯. IIC总线优点是节约总线数,稳定,快速,是目前芯片制造上非常流行的一种总线,大多数单片机已经片内集成了IIC总线接口,无需用户自己模拟,只需配置相关寄存器即可使用,但是,为了更好地理解IIC总线协议,可以自行按照IIC时序图进行模拟,加深理解. IIC总线有两条串行线,其一是时钟线SCK,其二是数据线SDA. 在寻常的应用之中,单片机常常作为主机,外围器件作为从机使用. 每一个从机器件都拥有唯一的一个地址,这

HTTP协议理解与应用总结

Request & Response Request格式<request-line> 比如:GET /api/index.json HTTP/1.1<headers> 比如:Accept: */*; User-Agent: Mozilla/4.0;……<blank line>[<request-body>] 比如:id=1&timestamp=xxxxxx Response格式<status-line> 比如:HTTP/1.1 2

HTTP协议理解

HTTP(Hyper Text Transfer Protocol)超文本传输协议,是一种请求响应式协议,类似两国会晤中需要遵守的规则.那么,其中有什么内容特点呢? HTTP特点: 1)支持客户端/服务器模式(浏览器也是一种客户端) 2)够简单,所以够快速 3)够灵活,传输什么类型的数据都能适应 4)无状态,指对事务处理没有记忆,也就是说没有续传性,一旦断开,下次重新连接要重新传输(区别于FTP是有状态的,假如传文件传到一半断网了,没事,下次接着传) HTTP版本问题: HTTP1.0每次只能处